freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-278-linear-combinations-of-semiprimes.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

45 lines
1.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4831000cf542c50ff95
title: 问题278半正定的线性组合
challengeType: 5
videoUrl: ''
dashedName: problem-278-linear-combinations-of-semiprimes
---
# --description--
给定整数1 &lt;a1 &lt;a2 &lt;... &lt;an的值考虑线性组合q1a1 + q2a2 + ... + qnan = b仅使用整数值qk≥0。
注意对于给定的ak集合可能不是b的所有值都是可能的。例如如果a1 = 5且a2 = 7则没有q1≥0且q2≥0使得b可以是1,2,3,4,6,8,9,11,13,16,18或23 。
事实上23是a1 = 5和a2 = 7的b的最大不可能值。因此我们称f5,7= 23.同样可以证明f6,10,15= 29和f14,22,77= 195。
找到Σfp *qp* rq \* r其中pq和r是素数p &lt;q &lt;r &lt;5000。
# --hints--
`euler278()`应该返回1228215747273908500。
```js
assert.strictEqual(euler278(), 1228215747273908500);
```
# --seed--
## --seed-contents--
```js
function euler278() {
return true;
}
euler278();
```
# --solutions--
```js
// solution required
```