Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.3 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4ed1000cf542c50fffe 问题384Rudin-Shapiro序列 5 problem-384-rudin-shapiro-sequence

--description--

将序列an定义为n的二进制展开可能重叠中相邻的1对的数量。例如a5= a1012= 0a6= a1102= 1a7= a1112= 2

定义序列bn= - 1an。该序列称为Rudin-Shapiro序列。还要考虑bn的总和序列

这些序列的前几个值是n 0 1 2 3 4 5 6 7 an0 0 0 1 0 0 1 2 bn1 1 1 -1 1 1 -1 1 sn1 2 3 2 3 4 3 4

序列sn具有显着特性即所有元素都是正的并且每个正整数k恰好出现k次。

定义gtc其中1≤c≤t作为sn中的索引其中t在sn中出现第c次。例如g3,3= 6g4,2= 7g54321,12345= 1220847710。

设Fn为由下式定义的斐波那契数F0= F1= 1且Fn= Fn-1+ Fn-2n> 1。

定义GFt= gFtFt-1

找到ΣGFt为2≤t≤45。

--hints--

euler384()应返回3354706415856333000。

assert.strictEqual(euler384(), 3354706415856333000);

--seed--

--seed-contents--

function euler384() {

  return true;
}

euler384();

--solutions--

// solution required