* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.3 KiB
1.3 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4ed1000cf542c50fffe | 问题384:Rudin-Shapiro序列 | 5 | problem-384-rudin-shapiro-sequence |
--description--
将序列a(n)定义为n的二进制展开(可能重叠)中相邻的1对的数量。例如:a(5)= a(1012)= 0,a(6)= a(1102)= 1,a(7)= a(1112)= 2
定义序列b(n)=( - 1)a(n)。该序列称为Rudin-Shapiro序列。还要考虑b(n)的总和序列:。
这些序列的前几个值是:n 0 1 2 3 4 5 6 7 a(n)0 0 0 1 0 0 1 2 b(n)1 1 1 -1 1 1 -1 1 s(n)1 2 3 2 3 4 3 4
序列s(n)具有显着特性,即所有元素都是正的,并且每个正整数k恰好出现k次。
定义g(t,c),其中1≤c≤t,作为s(n)中的索引,其中t在s(n)中出现第c次。例如:g(3,3)= 6,g(4,2)= 7,g(54321,12345)= 1220847710。
设F(n)为由下式定义的斐波那契数:F(0)= F(1)= 1且F(n)= F(n-1)+ F(n-2),n> 1。
定义GF(t)= g(F(t),F(t-1))。
找到ΣGF(t)为2≤t≤45。
--hints--
euler384()
应返回3354706415856333000。
assert.strictEqual(euler384(), 3354706415856333000);
--seed--
--seed-contents--
function euler384() {
return true;
}
euler384();
--solutions--
// solution required