* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1012 B
1012 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f5231000cf542c510034 | 问题438:多项式方程解的整数部分 | 5 | problem-438-integer-part-of-polynomial-equations-solutions |
--description--
对于整数的n元组t =(a1,...,an),let(x1,...,xn)是多项式方程xn + a1xn-1 + a2xn-2 + ... +的解。 an-1x + an = 0。
考虑以下两个条件:x1,...,xn都是真实的。如果x1,...,xn被排序,则⌊xi⌋= i,1≤i≤n。 (⌊·⌋:地板功能。)
在n = 4的情况下,有12个n元组的整数满足两个条件。我们将S(t)定义为t中整数绝对值的总和。对于n = 4,我们可以验证满足两个条件的所有n元组t的ΣS(t)= 2087。
找到ΣS(t)为n = 7。
--hints--
euler438()
应该返回2046409616809。
assert.strictEqual(euler438(), 2046409616809);
--seed--
--seed-contents--
function euler438() {
return true;
}
euler438();
--solutions--
// solution required