freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-438-integer-part-of-polynomial-equations-solutions.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1012 B
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f5231000cf542c510034 问题438多项式方程解的整数部分 5 problem-438-integer-part-of-polynomial-equations-solutions

--description--

对于整数的n元组t =a1...anletx1...xn是多项式方程xn + a1xn-1 + a2xn-2 + ... +的解。 an-1x + an = 0。

考虑以下两个条件x1...xn都是真实的。如果x1...xn被排序则⌊xi⌋= i1≤i≤n。 (⌊·⌋:地板功能。)

在n = 4的情况下有12个n元组的整数满足两个条件。我们将St定义为t中整数绝对值的总和。对于n = 4我们可以验证满足两个条件的所有n元组t的ΣSt= 2087。

找到ΣSt为n = 7。

--hints--

euler438()应该返回2046409616809。

assert.strictEqual(euler438(), 2046409616809);

--seed--

--seed-contents--

function euler438() {

  return true;
}

euler438();

--solutions--

// solution required