freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-438-integer-part-of-polynomial-equations-solutions.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

45 lines
1012 B
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f5231000cf542c510034
title: 问题438多项式方程解的整数部分
challengeType: 5
videoUrl: ''
dashedName: problem-438-integer-part-of-polynomial-equations-solutions
---
# --description--
对于整数的n元组t =a1...anletx1...xn是多项式方程xn + a1xn-1 + a2xn-2 + ... +的解。 an-1x + an = 0。
考虑以下两个条件x1...xn都是真实的。如果x1...xn被排序则⌊xi⌋= i1≤i≤n。 (⌊·⌋:地板功能。)
在n = 4的情况下有12个n元组的整数满足两个条件。我们将St定义为t中整数绝对值的总和。对于n = 4我们可以验证满足两个条件的所有n元组t的ΣSt= 2087。
找到ΣSt为n = 7。
# --hints--
`euler438()`应该返回2046409616809。
```js
assert.strictEqual(euler438(), 2046409616809);
```
# --seed--
## --seed-contents--
```js
function euler438() {
return true;
}
euler438();
```
# --solutions--
```js
// solution required
```