* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
942 B
942 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f5241000cf542c510037 | 问题440:GCD和平铺 | 5 | problem-440-gcd-and-tiling |
--description--
我们要完全平铺一块长度为n且高度为1的板,上面有1×2块或1×1块,上面有一个十进制数字:
例如,以下是铺砌长度为n = 8的板的一些方法:
令T(n)是如上所述的平铺长度为n的板的方式的数量。
例如,T(1)= 10且T(2)= 101。
令S(L)为1≤a,b,c≤L的三次和∑a,b,c gcd(T(ca),T(cb))。 例如: S(2)= 10444 S(3)= 1292115238446807016106539989 S(4)模数987898789 = 670616280。
找出S(2000)mod 987898898。
--hints--
euler440()
应该返回970746056。
assert.strictEqual(euler440(), 970746056);
--seed--
--seed-contents--
function euler440() {
return true;
}
euler440();
--solutions--
// solution required