* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.9 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f52e1000cf542c510041 | 问题450:Hypocycloid和Lattice点 | 5 | problem-450-hypocycloid-and-lattice-points |
--description--
内摆线是由在较大圆内滚动的小圆上的点绘制的曲线。以原点为中心,从最右边开始的内摆线的参数方程由下式给出: x(t)=(R - r)\\ cos(t)+ r \\ cos(\\ frac {R - r} rt)
$ y(t)=(R - r)\ sin(t) - r \ sin(\ frac {R - r} rt)$其中R是大圆的半径,r是小圆的半径圈。
设$ C(R,r)是具有半径为R和r的内摆线上的整数坐标的不同点的集合,并且对应的值为t,使得
\ sin(t)和
\ cos( t)$是有理数。
设$ S(R,r)= \ sum _ {(x,y)\ in C(R,r)} | x | + | y | 是
C(R,r)$中点的x和y坐标的绝对值之和。
设$ T(N)= \ sum {R = 3} ^ N \ sum {r = 1} ^ {\ lfloor \ frac {R - 1} 2 \ rfloor} S(R,r)$是$的总和S(R,r)表示R和r正整数,
R \ leq N 和
2r <R $。
给出:C(3,1)= {(3,0),(-1,2),( - 1,0),( - 1,-2)} C(2500,1000)= {(2500 ,0),(772,2376),(772,-2376),(516,1792),(516,-1792),(500,0),(68,504),(68,-504),( -1356,1088),( - 1356,-1088),( - 1500,1000),( - 1500,-1000)}
注意:( - 625,0)不是C(2500,1000)的元素,因为$ \ sin(t)$不是t的相应值的有理数。
S(3,1)=(| 3 | + | 0 |)+(| -1 | + | 2 |)+(| -1 | + | 0 |)+(| -1 | + | -2 |) = 10
T(3)= 10; T(10)= 524; T(100)= 580442; T(103)= 583108600。
求T(106)。
--hints--
euler450()
应该返回583333163984220900。
assert.strictEqual(euler450(), 583333163984220900);
--seed--
--seed-contents--
function euler450() {
return true;
}
euler450();
--solutions--
// solution required