freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-450-hypocycloid-and-lattice-points.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.9 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f52e1000cf542c510041 问题450Hypocycloid和Lattice点 5 problem-450-hypocycloid-and-lattice-points

--description--

内摆线是由在较大圆内滚动的小圆上的点绘制的曲线。以原点为中心,从最右边开始的内摆线的参数方程由下式给出: xt=R - r\\ cost+ r \\ cos\\ frac {R - r} rt $ yt=R - r\ sint - r \ sin\ frac {R - r} rt$其中R是大圆的半径r是小圆的半径圈。

设$ CRr是具有半径为R和r的内摆线上的整数坐标的不同点的集合并且对应的值为t使得 \ sint \ cos t$是有理数。

设$ SRr= \ sum _ {xy\ in CRr} | x | + | y | CRr$中点的x和y坐标的绝对值之和。

设$ TN= \ sum {R = 3} ^ N \ sum {r = 1} ^ {\ lfloor \ frac {R - 1} 2 \ rfloor} SRr$是$的总和SRr表示R和r正整数 R \ leq N 2r <R $。

给出C3,1= {3,0-1,2 - 1,0 - 1-2} C2500,1000= {2500 0772,2376772-2376516,1792516-1792500,068,50468-504 -1356,1088 - 1356-1088 - 1500,1000 - 1500-1000}

注意:( - 625,0不是C2500,1000的元素因为$ \ sint$不是t的相应值的有理数。

S3,1=| 3 | + | 0 |+| -1 | + | 2 |+| -1 | + | 0 |+| -1 | + | -2 | = 10

T3= 10; T10= 524; T100= 580442; T103= 583108600。

求T106

--hints--

euler450()应该返回583333163984220900。

assert.strictEqual(euler450(), 583333163984220900);

--seed--

--seed-contents--

function euler450() {

  return true;
}

euler450();

--solutions--

// solution required