freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-450-hypocycloid-and-lattice-points.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

55 lines
1.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f52e1000cf542c510041
title: 问题450Hypocycloid和Lattice点
challengeType: 5
videoUrl: ''
dashedName: problem-450-hypocycloid-and-lattice-points
---
# --description--
内摆线是由在较大圆内滚动的小圆上的点绘制的曲线。以原点为中心,从最右边开始的内摆线的参数方程由下式给出:$ xt=R - r\\ cost+ r \\ cos\\ frac {R - r} rt$ $ yt=R - r\\ sint - r \\ sin\\ frac {R - r} rt$其中R是大圆的半径r是小圆的半径圈。
设$ CRr$是具有半径为R和r的内摆线上的整数坐标的不同点的集合并且对应的值为t使得$ \\ sint$和$ \\ cos t$是有理数。
设$ SRr= \\ sum \_ {xy\\ in CRr} | x | + | y | $是$ CRr$中点的x和y坐标的绝对值之和。
设$ TN= \\ sum *{R = 3} ^ N \\ sum* {r = 1} ^ {\\ lfloor \\ frac {R - 1} 2 \\ rfloor} SRr$是$的总和SRr$表示R和r正整数$ R \\ leq N $和$ 2r &lt;R $。
给出C3,1= {3,0-1,2 - 1,0 - 1-2} C2500,1000= {2500 0772,2376772-2376516,1792516-1792500,068,50468-504 -1356,1088 - 1356-1088 - 1500,1000 - 1500-1000}
注意:( - 625,0不是C2500,1000的元素因为$ \\ sint$不是t的相应值的有理数。
S3,1=| 3 | + | 0 |+| -1 | + | 2 |+| -1 | + | 0 |+| -1 | + | -2 | = 10
T3= 10; T10= 524; T100= 580442; T103= 583108600。
求T106
# --hints--
`euler450()`应该返回583333163984220900。
```js
assert.strictEqual(euler450(), 583333163984220900);
```
# --seed--
## --seed-contents--
```js
function euler450() {
return true;
}
euler450();
```
# --solutions--
```js
// solution required
```