* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
43 lines
720 B
Markdown
43 lines
720 B
Markdown
---
|
||
id: 5900f5361000cf542c510048
|
||
title: 问题457:多项式以素数的平方为模
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-457-a-polynomial-modulo-the-square-of-a-prime
|
||
---
|
||
|
||
# --description--
|
||
|
||
设f(n)= n2 - 3n - 1.设p为素数。令R(p)是最小的正整数n,使得如果存在这样的整数n则f(n)mod p2 = 0,否则R(p)= 0。
|
||
|
||
对于不超过L的所有素数,令SR(L)为ΣR(p)。
|
||
|
||
找到SR(107)。
|
||
|
||
# --hints--
|
||
|
||
`euler457()`应该返回2647787126797397000。
|
||
|
||
```js
|
||
assert.strictEqual(euler457(), 2647787126797397000);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler457() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler457();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|