* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
847 B
847 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f54b1000cf542c51005d | 问题479:崛起的根源 | 5 | problem-479-roots-on-the-rise |
--description--
设ak,bk和ck表示表达式1 / x =(k / x)2(k + x2)-kx的三个解(实数或复数)。
例如,对于k = 5,我们看到{a5,b5,c5}约为{5.727244,-0.363622 + 2.057397i,-0.363622-2.057397i}。
令所有整数p,k的S(n)=Σ(ak + bk)p(bk + ck)p(ck + ak)p,使得1≤p,k≤n。
有趣的是,S(n)总是一个整数。例如,S(4)= 51160。
求S(106)modulo 1 000 000 007。
--hints--
euler479()
应该返回191541795。
assert.strictEqual(euler479(), 191541795);
--seed--
--seed-contents--
function euler479() {
return true;
}
euler479();
--solutions--
// solution required