* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
11 KiB
11 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
594810f028c0303b75339ad7 | Zhang-Suen 细化算法 | 5 | 302347 | zhang-suen-thinning-algorithm |
--description--
这是一个黑白图像(二值图像)的细化算法。 例如,输入图像如下:
################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ######
细化后的输出图像为:
# ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ###
算法
假设黑像素点为 1,白像素点为 0;则输入图像可以用一个 N * M 的矩阵(或数组)来表示,其中,矩阵中的元素只能为 0 或 1。这个算法对所有黑像素点 P1 进行操作。每个点 P1 都可以有 8 个相邻的点,分别是:
P9 | P2 | P3 |
P8 | P1 | P4 |
P7 | P6 | P5 |
显然,对于图像边框上的像素点,与它们相邻的点的数量是小于 8 的。
- 令 $A(P1)$ 为需要变为黑点的白点数量,即在 P2, P3, P4, P5, P6, P7, P8, P9, P2 这一序列中,(0 -> 1) 的操作次数(注意:为了表示循环/闭环,我们在序列的结尾特地多加了一个 P2)
- 令 $B(P1)$ 为与 P1 相邻的点中,黑点的数量(即 sum(P2 .. P9))
步骤一:
选出同时满足以下列出条件的所有像素点:
- 像素点为黑色,且有 8 个点与之相邻
- $2 <= B(P1) <= 6$
- $A(P1) = 1$
- P2, P4 and P6 中至少有一个是白点
- P4, P6 and P8 中至少有一个是白点
在对图像进行迭代并选出所有符合这一步所述条件的点后,把这些点都设置为白色。
步骤二:
选出同时满足以下列出条件的所有像素点:
- 像素点为黑色,且有 8 个点与之相邻
- $2 <= B(P1) <= 6$
- $A(P1) = 1$
- P2, P4 and P6 中至少有一个是白点
- P2, P6 and P8 中至少有一个是白点
在对图像进行迭代并选出所有符合这一步所述条件的点后,把这些点都设置为白色。
迭代:
只要在步骤一或步骤二,有黑色点被选出并设置成了白色,则继续重复步骤一和步骤二,直到没有黑色点被选出并更改为止。
--instructions--
基于输入图像(以矩阵的形式给出),实现 Zhang-suen 细化算法。
--hints--
thinImage
应为函数。
assert.equal(typeof thinImage, 'function');
thinImage
应返回数组。
assert(Array.isArray(result));
thinImage
应返回字符串数组。
assert.equal(typeof result[0], 'string');
thinImage
应返回预计的结果。
assert.deepEqual(result, expected);
--seed--
--after-user-code--
const imageForTests = [
' ',
' ################# ############# ',
' ################## ################ ',
' ################### ################## ',
' ######## ####### ################### ',
' ###### ####### ####### ###### ',
' ###### ####### ####### ',
' ################# ####### ',
' ################ ####### ',
' ################# ####### ',
' ###### ####### ####### ',
' ###### ####### ####### ',
' ###### ####### ####### ###### ',
' ######## ####### ################### ',
' ######## ####### ###### ################## ###### ',
' ######## ####### ###### ################ ###### ',
' ######## ####### ###### ############# ###### ',
' '];
const expected = [
' ',
' ',
' # ########## ####### ',
' ## # #### # ',
' # # ## ',
' # # # ',
' # # # ',
' # # # ',
' ############ # ',
' # # # ',
' # # # ',
' # # # ',
' # # # ',
' # ## ',
' # ############ ',
' ### ### ',
' ',
' '
];
const result = thinImage(imageForTests);
--seed-contents--
const testImage = [
' ',
' ################# ############# ',
' ################## ################ ',
' ################### ################## ',
' ######## ####### ################### ',
' ###### ####### ####### ###### ',
' ###### ####### ####### ',
' ################# ####### ',
' ################ ####### ',
' ################# ####### ',
' ###### ####### ####### ',
' ###### ####### ####### ',
' ###### ####### ####### ###### ',
' ######## ####### ################### ',
' ######## ####### ###### ################## ###### ',
' ######## ####### ###### ################ ###### ',
' ######## ####### ###### ############# ###### ',
' '];
function thinImage(image) {
}
--solutions--
function Point(x, y) {
this.x = x;
this.y = y;
}
const ZhangSuen = (function () {
function ZhangSuen() {
}
ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
ZhangSuen.toWhite = [];
ZhangSuen.main = function (image) {
ZhangSuen.grid = new Array(image);
for (let r = 0; r < image.length; r++) {
ZhangSuen.grid[r] = image[r].split('');
}
ZhangSuen.thinImage();
return ZhangSuen.getResult();
};
ZhangSuen.thinImage = function () {
let firstStep = false;
let hasChanged;
do {
hasChanged = false;
firstStep = !firstStep;
for (let r = 1; r < ZhangSuen.grid.length - 1; r++) {
for (let c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
if (ZhangSuen.grid[r][c] !== '#') {
continue;
}
const nn = ZhangSuen.numNeighbors(r, c);
if (nn < 2 || nn > 6) {
continue;
}
if (ZhangSuen.numTransitions(r, c) !== 1) {
continue;
}
if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1)) {
continue;
}
ZhangSuen.toWhite.push(new Point(c, r));
hasChanged = true;
}
}
for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
const p = ZhangSuen.toWhite[i];
ZhangSuen.grid[p.y][p.x] = ' ';
}
ZhangSuen.toWhite = [];
} while ((firstStep || hasChanged));
};
ZhangSuen.numNeighbors = function (r, c) {
let count = 0;
for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#') {
count++;
}
}
return count;
};
ZhangSuen.numTransitions = function (r, c) {
let count = 0;
for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#') {
count++;
}
}
}
return count;
};
ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
let count = 0;
const group = ZhangSuen.nbrGroups[step];
for (let i = 0; i < 2; i++) {
for (let j = 0; j < group[i].length; j++) {
const nbr = ZhangSuen.nbrs[group[i][j]];
if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
count++;
break;
}
}
}
return count > 1;
};
ZhangSuen.getResult = function () {
const result = [];
for (let i = 0; i < ZhangSuen.grid.length; i++) {
const row = ZhangSuen.grid[i].join('');
result.push(row);
}
return result;
};
return ZhangSuen;
}());
function thinImage(image) {
return ZhangSuen.main(image);
}