* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
322 lines
11 KiB
Markdown
322 lines
11 KiB
Markdown
---
|
||
id: 594810f028c0303b75339ad7
|
||
title: Zhang-Suen 细化算法
|
||
challengeType: 5
|
||
forumTopicId: 302347
|
||
dashedName: zhang-suen-thinning-algorithm
|
||
---
|
||
|
||
# --description--
|
||
|
||
这是一个黑白图像(二值图像)的细化算法。 例如,输入图像如下:
|
||
|
||
<!-- TODO write fully in markdown>
|
||
<!-- markdownlint-disable -->
|
||
|
||
<pre>
|
||
################# #############
|
||
################## ################
|
||
################### ##################
|
||
######## ####### ###################
|
||
###### ####### ####### ######
|
||
###### ####### #######
|
||
################# #######
|
||
################ #######
|
||
################# #######
|
||
###### ####### #######
|
||
###### ####### #######
|
||
###### ####### ####### ######
|
||
######## ####### ###################
|
||
######## ####### ###### ################## ######
|
||
######## ####### ###### ################ ######
|
||
######## ####### ###### ############# ######
|
||
</pre>
|
||
|
||
细化后的输出图像为:
|
||
|
||
<pre>
|
||
|
||
# ########## #######
|
||
## # #### #
|
||
# # ##
|
||
# # #
|
||
# # #
|
||
# # #
|
||
############ #
|
||
# # #
|
||
# # #
|
||
# # #
|
||
# # #
|
||
# ##
|
||
# ############
|
||
### ###
|
||
|
||
</pre>
|
||
|
||
<h2>算法</h2>
|
||
|
||
假设黑像素点为 1,白像素点为 0;则输入图像可以用一个 N \* M 的矩阵(或数组)来表示,其中,矩阵中的元素只能为 0 或 1。这个算法对所有黑像素点 P1 进行操作。每个点 P1 都可以有 8 个相邻的点,分别是:
|
||
|
||
<table border="3">
|
||
<tr><td style="text-align: center;">P9</td><td style="text-align: center;">P2</td><td style="text-align: center;">P3</td></tr>
|
||
<tr><td style="text-align: center;">P8</td><td style="text-align: center;"><strong>P1</strong></td><td style="text-align: center;">P4</td></tr>
|
||
<tr><td style="text-align: center;">P7</td><td style="text-align: center;">P6</td><td style="text-align: center;">P5</td></tr>
|
||
</table>
|
||
|
||
显然,对于图像边框上的像素点,与它们相邻的点的数量是小于 8 的。
|
||
|
||
<ul>
|
||
<li>令 $A(P1)$ 为需要变为黑点的白点数量,即在 P2, P3, P4, P5, P6, P7, P8, P9, P2 这一序列中,(0 -> 1) 的操作次数(注意:为了表示循环/闭环,我们在序列的结尾特地多加了一个 P2)</li>
|
||
<li>令 $B(P1)$ 为与 P1 相邻的点中,黑点的数量(即 sum(P2 .. P9))</li>
|
||
</ul>
|
||
|
||
<h3>步骤一:</h3>
|
||
|
||
选出同时满足以下列出条件的所有像素点:
|
||
|
||
<ol>
|
||
<li>像素点为黑色,且有 8 个点与之相邻</li>
|
||
<li>$2 <= B(P1) <= 6$</li>
|
||
<li>$A(P1) = 1$</li>
|
||
<li><strong>P2, P4 and P6</strong> 中至少有一个是白点</li>
|
||
<li><strong>P4, P6 and P8</strong> 中至少有一个是白点</li>
|
||
</ol>
|
||
|
||
在对图像进行迭代并选出所有符合这一步所述条件的点后,把这些点都设置为白色。
|
||
|
||
<h3>步骤二:</h3>
|
||
|
||
选出同时满足以下列出条件的所有像素点:
|
||
|
||
<ol>
|
||
<li>像素点为黑色,且有 8 个点与之相邻</li>
|
||
<li>$2 <= B(P1) <= 6$</li>
|
||
<li>$A(P1) = 1$</li>
|
||
<li><strong>P2, P4 and P6</strong> 中至少有一个是白点</li>
|
||
<li><strong>P2, P6 and P8</strong> 中至少有一个是白点</li>
|
||
</ol>
|
||
|
||
在对图像进行迭代并选出所有符合这一步所述条件的点后,把这些点都设置为白色。
|
||
|
||
<h3>迭代:</h3>
|
||
|
||
只要在步骤一或步骤二,有黑色点被选出并设置成了白色,则继续重复步骤一和步骤二,直到没有黑色点被选出并更改为止。
|
||
|
||
# --instructions--
|
||
|
||
基于输入图像(以矩阵的形式给出),实现 Zhang-suen 细化算法。
|
||
|
||
# --hints--
|
||
|
||
`thinImage` 应为函数。
|
||
|
||
```js
|
||
assert.equal(typeof thinImage, 'function');
|
||
```
|
||
|
||
`thinImage` 应返回数组。
|
||
|
||
```js
|
||
assert(Array.isArray(result));
|
||
```
|
||
|
||
`thinImage` 应返回字符串数组。
|
||
|
||
```js
|
||
assert.equal(typeof result[0], 'string');
|
||
```
|
||
|
||
`thinImage` 应返回预计的结果。
|
||
|
||
```js
|
||
assert.deepEqual(result, expected);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --after-user-code--
|
||
|
||
```js
|
||
const imageForTests = [
|
||
' ',
|
||
' ################# ############# ',
|
||
' ################## ################ ',
|
||
' ################### ################## ',
|
||
' ######## ####### ################### ',
|
||
' ###### ####### ####### ###### ',
|
||
' ###### ####### ####### ',
|
||
' ################# ####### ',
|
||
' ################ ####### ',
|
||
' ################# ####### ',
|
||
' ###### ####### ####### ',
|
||
' ###### ####### ####### ',
|
||
' ###### ####### ####### ###### ',
|
||
' ######## ####### ################### ',
|
||
' ######## ####### ###### ################## ###### ',
|
||
' ######## ####### ###### ################ ###### ',
|
||
' ######## ####### ###### ############# ###### ',
|
||
' '];
|
||
const expected = [
|
||
' ',
|
||
' ',
|
||
' # ########## ####### ',
|
||
' ## # #### # ',
|
||
' # # ## ',
|
||
' # # # ',
|
||
' # # # ',
|
||
' # # # ',
|
||
' ############ # ',
|
||
' # # # ',
|
||
' # # # ',
|
||
' # # # ',
|
||
' # # # ',
|
||
' # ## ',
|
||
' # ############ ',
|
||
' ### ### ',
|
||
' ',
|
||
' '
|
||
];
|
||
const result = thinImage(imageForTests);
|
||
```
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
const testImage = [
|
||
' ',
|
||
' ################# ############# ',
|
||
' ################## ################ ',
|
||
' ################### ################## ',
|
||
' ######## ####### ################### ',
|
||
' ###### ####### ####### ###### ',
|
||
' ###### ####### ####### ',
|
||
' ################# ####### ',
|
||
' ################ ####### ',
|
||
' ################# ####### ',
|
||
' ###### ####### ####### ',
|
||
' ###### ####### ####### ',
|
||
' ###### ####### ####### ###### ',
|
||
' ######## ####### ################### ',
|
||
' ######## ####### ###### ################## ###### ',
|
||
' ######## ####### ###### ################ ###### ',
|
||
' ######## ####### ###### ############# ###### ',
|
||
' '];
|
||
|
||
function thinImage(image) {
|
||
|
||
}
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
function Point(x, y) {
|
||
this.x = x;
|
||
this.y = y;
|
||
}
|
||
|
||
const ZhangSuen = (function () {
|
||
function ZhangSuen() {
|
||
}
|
||
|
||
ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
|
||
|
||
ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
|
||
|
||
ZhangSuen.toWhite = [];
|
||
|
||
ZhangSuen.main = function (image) {
|
||
ZhangSuen.grid = new Array(image);
|
||
for (let r = 0; r < image.length; r++) {
|
||
ZhangSuen.grid[r] = image[r].split('');
|
||
}
|
||
ZhangSuen.thinImage();
|
||
return ZhangSuen.getResult();
|
||
};
|
||
|
||
ZhangSuen.thinImage = function () {
|
||
let firstStep = false;
|
||
let hasChanged;
|
||
do {
|
||
hasChanged = false;
|
||
firstStep = !firstStep;
|
||
for (let r = 1; r < ZhangSuen.grid.length - 1; r++) {
|
||
for (let c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
|
||
if (ZhangSuen.grid[r][c] !== '#') {
|
||
continue;
|
||
}
|
||
const nn = ZhangSuen.numNeighbors(r, c);
|
||
if (nn < 2 || nn > 6) {
|
||
continue;
|
||
}
|
||
if (ZhangSuen.numTransitions(r, c) !== 1) {
|
||
continue;
|
||
}
|
||
if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1)) {
|
||
continue;
|
||
}
|
||
ZhangSuen.toWhite.push(new Point(c, r));
|
||
hasChanged = true;
|
||
}
|
||
}
|
||
for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
|
||
const p = ZhangSuen.toWhite[i];
|
||
ZhangSuen.grid[p.y][p.x] = ' ';
|
||
}
|
||
ZhangSuen.toWhite = [];
|
||
} while ((firstStep || hasChanged));
|
||
};
|
||
|
||
ZhangSuen.numNeighbors = function (r, c) {
|
||
let count = 0;
|
||
for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
|
||
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#') {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
};
|
||
|
||
ZhangSuen.numTransitions = function (r, c) {
|
||
let count = 0;
|
||
for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
|
||
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
|
||
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#') {
|
||
count++;
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
};
|
||
|
||
ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
|
||
let count = 0;
|
||
const group = ZhangSuen.nbrGroups[step];
|
||
for (let i = 0; i < 2; i++) {
|
||
for (let j = 0; j < group[i].length; j++) {
|
||
const nbr = ZhangSuen.nbrs[group[i][j]];
|
||
if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
|
||
count++;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return count > 1;
|
||
};
|
||
|
||
ZhangSuen.getResult = function () {
|
||
const result = [];
|
||
for (let i = 0; i < ZhangSuen.grid.length; i++) {
|
||
const row = ZhangSuen.grid[i].join('');
|
||
result.push(row);
|
||
}
|
||
return result;
|
||
};
|
||
return ZhangSuen;
|
||
}());
|
||
|
||
function thinImage(image) {
|
||
return ZhangSuen.main(image);
|
||
}
|
||
```
|