* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.9 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5a23c84252665b21eecc8041 | Sum of a series | 5 | 302333 | sum-of-a-series |
--description--
Compute the nth term of a series, i.e. the sum of the n first terms of the corresponding sequence. Informally this value, or its limit when n tends to infinity, is also called the sum of the series, thus the title of this task. For this task, use: S*n = \\sum*{k=1}^n \\frac{1}{k^2}
and compute S\_{1000}
This approximates the zeta function for S=2, whose exact value \\zeta(2) = {\\pi^2\\over 6}
is the solution of the Basel problem.
--instructions--
Write a function that take a
and b
as parameters and returns the sum of a^{th}
to b^{th}
members of the sequence.
--hints--
sum
should be a function.
assert(typeof sum == 'function');
sum(1, 100)
should return a number.
assert(typeof sum(1, 100) == 'number');
sum(1, 100)
should return 1.6349839001848923
.
assert.equal(sum(1, 100), 1.6349839001848923);
sum(33, 46)
should return 0.009262256361481223
.
assert.equal(sum(33, 46), 0.009262256361481223);
sum(21, 213)
should return 0.044086990748706555
.
assert.equal(sum(21, 213), 0.044086990748706555);
sum(11, 111)
should return 0.08619778593108679
.
assert.equal(sum(11, 111), 0.08619778593108679);
sum(1, 10)
should return 1.5497677311665408
.
assert.equal(sum(1, 10), 1.5497677311665408);
--seed--
--seed-contents--
function sum(a, b) {
}
--solutions--
function sum(a, b) {
function fn(x) {
return 1 / (x * x);
}
var s = 0;
for (; a <= b; a++) s += fn(a);
return s;
}