* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
83 lines
1.9 KiB
Markdown
83 lines
1.9 KiB
Markdown
---
|
|
id: 5a23c84252665b21eecc8041
|
|
title: Sum of a series
|
|
challengeType: 5
|
|
forumTopicId: 302333
|
|
dashedName: sum-of-a-series
|
|
---
|
|
|
|
# --description--
|
|
|
|
Compute the **n**<sup>th</sup> term of a [series](<https://en.wikipedia.org/wiki/Series (mathematics)>), i.e. the sum of the **n** first terms of the corresponding [sequence](https://en.wikipedia.org/wiki/sequence). Informally this value, or its limit when **n** tends to infinity, is also called the *sum of the series*, thus the title of this task. For this task, use: $S*n = \\sum*{k=1}^n \\frac{1}{k^2}$ and compute $S\_{1000}$ This approximates the [zeta function](<https://en.wikipedia.org/wiki/Riemann zeta function>) for S=2, whose exact value $\\zeta(2) = {\\pi^2\\over 6}$ is the solution of the [Basel problem](<https://en.wikipedia.org/wiki/Basel problem>).
|
|
|
|
# --instructions--
|
|
|
|
Write a function that take $a$ and $b$ as parameters and returns the sum of $a^{th}$ to $b^{th}$ members of the sequence.
|
|
|
|
# --hints--
|
|
|
|
`sum` should be a function.
|
|
|
|
```js
|
|
assert(typeof sum == 'function');
|
|
```
|
|
|
|
`sum(1, 100)` should return a number.
|
|
|
|
```js
|
|
assert(typeof sum(1, 100) == 'number');
|
|
```
|
|
|
|
`sum(1, 100)` should return `1.6349839001848923`.
|
|
|
|
```js
|
|
assert.equal(sum(1, 100), 1.6349839001848923);
|
|
```
|
|
|
|
`sum(33, 46)` should return `0.009262256361481223`.
|
|
|
|
```js
|
|
assert.equal(sum(33, 46), 0.009262256361481223);
|
|
```
|
|
|
|
`sum(21, 213)` should return `0.044086990748706555`.
|
|
|
|
```js
|
|
assert.equal(sum(21, 213), 0.044086990748706555);
|
|
```
|
|
|
|
`sum(11, 111)` should return `0.08619778593108679`.
|
|
|
|
```js
|
|
assert.equal(sum(11, 111), 0.08619778593108679);
|
|
```
|
|
|
|
`sum(1, 10)` should return `1.5497677311665408`.
|
|
|
|
```js
|
|
assert.equal(sum(1, 10), 1.5497677311665408);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function sum(a, b) {
|
|
|
|
}
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
function sum(a, b) {
|
|
function fn(x) {
|
|
return 1 / (x * x);
|
|
}
|
|
var s = 0;
|
|
for (; a <= b; a++) s += fn(a);
|
|
return s;
|
|
}
|
|
```
|