freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-91-right-triangles-with-integer-coordinates.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.8 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3c71000cf542c50feda Problem 91: Right triangles with integer coordinates 5 302208 problem-91-right-triangles-with-integer-coordinates

--description--

The points P (x1, y1) and Q (x2, y2) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ.

a graph plotting points P (x_1, y_1) and Q(x_2, y_2) at integer coordinates that are joined to the origin O (0, 0)

There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is, 0 ≤ x1, y1, x2, y2 ≤ 2.

a diagram showing the 14 triangles containing a right angle that can be formed when each coordinate is between 0 and 2

Given that 0 ≤ x1, y1, x2, y2 ≤ 50, how many right triangles can be formed?

--hints--

rightTrianglesIntCoords() should return a number.

assert(typeof rightTrianglesIntCoords() === 'number');

rightTrianglesIntCoords() should return 14234.

assert.strictEqual(rightTrianglesIntCoords(), 14234);

--seed--

--seed-contents--

function rightTrianglesIntCoords() {

  return true;
}

rightTrianglesIntCoords();

--solutions--

// solution required