freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-91-right-triangles-with-integer-coordinates.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

53 lines
1.8 KiB
Markdown

---
id: 5900f3c71000cf542c50feda
title: 'Problem 91: Right triangles with integer coordinates'
challengeType: 5
forumTopicId: 302208
dashedName: problem-91-right-triangles-with-integer-coordinates
---
# --description--
The points P (`x`<sub>1</sub>, `y`<sub>1</sub>) and Q (`x`<sub>2</sub>, `y`<sub>2</sub>) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ.
<img class="img-responsive center-block" alt="a graph plotting points P (x_1, y_1) and Q(x_2, y_2) at integer coordinates that are joined to the origin O (0, 0)" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-1.png" style="background-color: white; padding: 10px;">
There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is, 0 ≤ `x`<sub>1</sub>, `y`<sub>1</sub>, `x`<sub>2</sub>, `y`<sub>2</sub> ≤ 2.
<img class="img-responsive center-block" alt="a diagram showing the 14 triangles containing a right angle that can be formed when each coordinate is between 0 and 2" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-2.png" style="background-color: white; padding: 10px;">
Given that 0 ≤ `x`<sub>1</sub>, `y`<sub>1</sub>, `x`<sub>2</sub>, `y`<sub>2</sub> ≤ 50, how many right triangles can be formed?
# --hints--
`rightTrianglesIntCoords()` should return a number.
```js
assert(typeof rightTrianglesIntCoords() === 'number');
```
`rightTrianglesIntCoords()` should return 14234.
```js
assert.strictEqual(rightTrianglesIntCoords(), 14234);
```
# --seed--
## --seed-contents--
```js
function rightTrianglesIntCoords() {
return true;
}
rightTrianglesIntCoords();
```
# --solutions--
```js
// solution required
```