* fix: clean-up Project Euler 121-140 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: missing backticks Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
	
		
			1.4 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.4 KiB
		
	
	
	
	
	
	
	
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName | 
|---|---|---|---|---|
| 5900f3fa1000cf542c50ff0c | Problem 140: Modified Fibonacci golden nuggets | 5 | 301769 | problem-140-modified-fibonacci-golden-nuggets | 
--description--
Consider the infinite polynomial series A_G(x) = xG_1 + x^2G_2 + x^3G_3 + \cdots, where G_k is the $k$th term of the second order recurrence relation G_k = G_{k − 1} + G_{k − 2}, G_1 = 1 and G_2 = 4; that is, 1, 4, 5, 9, 14, 23, \ldots.
For this problem we shall be concerned with values of x for which A_G(x) is a positive integer.
The corresponding values of x for the first five natural numbers are shown below.
| x | A_G(x) | 
|---|---|
| \frac{\sqrt{5} − 1}{4} | 1 | 
| \frac{2}{5} | 2 | 
| \frac{\sqrt{22} − 2}{6} | 3 | 
| \frac{\sqrt{137} − 5}{14} | 4 | 
| \frac{1}{2} | 5 | 
We shall call A_G(x) a golden nugget if x is rational because they become increasingly rarer; for example, the 20th golden nugget is 211345365. Find the sum of the first thirty golden nuggets.
--hints--
modifiedGoldenNuggets() should return 5673835352990
assert.strictEqual(modifiedGoldenNuggets(), 5673835352990);
--seed--
--seed-contents--
function modifiedGoldenNuggets() {
  return true;
}
modifiedGoldenNuggets();
--solutions--
// solution required