* fix: clean-up Project Euler 161-180 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			59 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			59 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4201000cf542c50ff33
 | ||
| title: 'Problem 180: Rational zeros of a function of three variables'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301816
 | ||
| dashedName: problem-180-rational-zeros-of-a-function-of-three-variables
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| For any integer $n$, consider the three functions
 | ||
| 
 | ||
| $$\begin{align}
 | ||
|   & f_{1,n}(x,y,z) = x^{n + 1} + y^{n + 1} − z^{n + 1}\\\\
 | ||
|   & f_{2,n}(x,y,z) = (xy + yz + zx) \times (x^{n - 1} + y^{n - 1} − z^{n - 1})\\\\
 | ||
|   & f_{3,n}(x,y,z) = xyz \times (x^{n - 2} + y^{n - 2} − z^{n - 2})
 | ||
| \end{align}$$
 | ||
| 
 | ||
| and their combination
 | ||
| 
 | ||
| $$\begin{align}
 | ||
|   & f_n(x,y,z) = f_{1,n}(x,y,z) + f_{2,n}(x,y,z) − f_{3,n}(x,y,z)
 | ||
| \end{align}$$
 | ||
| 
 | ||
| We call $(x,y,z)$ a golden triple of order $k$ if $x$, $y$, and $z$ are all rational numbers of the form $\frac{a}{b}$ with $0 < a < b ≤ k$ and there is (at least) one integer $n$, so that $f_n(x,y,z) = 0$.
 | ||
| 
 | ||
| Let $s(x,y,z) = x + y + z$.
 | ||
| 
 | ||
| Let $t = \frac{u}{v}$ be the sum of all distinct $s(x,y,z)$ for all golden triples $(x,y,z)$ of order 35. All the $s(x,y,z)$ and $t$ must be in reduced form.
 | ||
| 
 | ||
| Find $u + v$.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `rationalZeros()` should return `285196020571078980`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(rationalZeros(), 285196020571078980);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function rationalZeros() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| rationalZeros();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |