56 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3e61000cf542c50fef9
 | ||
| challengeType: 5
 | ||
| title: 'Problem 122: Efficient exponentiation'
 | ||
| videoUrl: ''
 | ||
| localeTitle: 问题122:有效取幂
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id="description">最简单的计算n15的方法需要十四次乘法:n×n×...×n = n15但是使用“二进制”方法可以在六次乘法中计算它:n×n = n2n2×n2 = n4n4×n4 = n8n8 ×n4 = n12n12×n2 = n14n14×n = n15然而,只能在五次乘法中计算它:n×n = n2n2×n = n3n3×n3 = n6n6×n6 = n12n12×n3 = n15我们将定义m (k)是计算nk的最小乘法数;例如m(15)= 5.对于1≤k≤200,找到Σm(k)。 </section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id="instructions">
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>euler122()</code>应返回1582。
 | ||
|     testString: 'assert.strictEqual(euler122(), 1582, "<code>euler122()</code> should return 1582.");'
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler122() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler122();
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| </section>
 |