67 lines
		
	
	
		
			962 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			962 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3e81000cf542c50fefb
 | ||
| title: 'Problem 124: Ordered radicals'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301751
 | ||
| dashedName: problem-124-ordered-radicals
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| The radical of n, rad(n), is the product of the distinct prime factors of n. For example, 504 = 23 × 32 × 7, so rad(504) = 2 × 3 × 7 = 42.
 | ||
| 
 | ||
| If we calculate rad(n) for 1 ≤ n ≤ 10, then sort them on rad(n), and sorting on n if the radical values are equal, we get:
 | ||
| 
 | ||
| Unsorted
 | ||
| 
 | ||
| Sorted n rad(n)
 | ||
| 
 | ||
| n rad(n) k 11
 | ||
| 
 | ||
| 111 22
 | ||
| 
 | ||
| 222 33
 | ||
| 
 | ||
| 423 42
 | ||
| 
 | ||
| 824 55
 | ||
| 
 | ||
| 335 66
 | ||
| 
 | ||
| 936 77
 | ||
| 
 | ||
| 557 82
 | ||
| 
 | ||
| 668 93
 | ||
| 
 | ||
| 779 1010
 | ||
| 
 | ||
| 101010 Let E(k) be the kth element in the sorted n column; for example, E(4) = 8 and E(6) = 9. If rad(n) is sorted for 1 ≤ n ≤ 100000, find E(10000).
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `euler124()` should return 21417.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(euler124(), 21417);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function euler124() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler124();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |