53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3e61000cf542c50fef9
 | ||
| title: 'Problem 122: Efficient exponentiation'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301749
 | ||
| dashedName: problem-122-efficient-exponentiation
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| The most naive way of computing n15 requires fourteen multiplications:
 | ||
| 
 | ||
| n × n × ... × n = n15
 | ||
| 
 | ||
| But using a "binary" method you can compute it in six multiplications:
 | ||
| 
 | ||
| n × n = n2n2 × n2 = n4n4 × n4 = n8n8 × n4 = n12n12 × n2 = n14n14 × n = n15
 | ||
| 
 | ||
| However it is yet possible to compute it in only five multiplications:
 | ||
| 
 | ||
| n × n = n2n2 × n = n3n3 × n3 = n6n6 × n6 = n12n12 × n3 = n15
 | ||
| 
 | ||
| We shall define m(k) to be the minimum number of multiplications to compute nk; for example m(15) = 5.
 | ||
| 
 | ||
| For 1 ≤ k ≤ 200, find ∑ m(k).
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `euler122()` should return 1582.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(euler122(), 1582);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function euler122() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler122();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |