49 lines
		
	
	
		
			981 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			981 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4421000cf542c50ff55
 | |
| title: 'Problem 214: Totient Chains'
 | |
| challengeType: 5
 | |
| forumTopicId: 301856
 | |
| dashedName: problem-214-totient-chains
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let φ be Euler's totient function, i.e. for a natural number n,
 | |
| 
 | |
| φ(n) is the number of k, 1 ≤ k ≤ n, for which gcd(k,n) = 1.
 | |
| 
 | |
| By iterating φ, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4:
 | |
| 
 | |
| 5,4,2,1 7,6,2,1 8,4,2,1 9,6,2,1 10,4,2,1 12,4,2,1 14,6,2,1 18,6,2,1
 | |
| 
 | |
| Only two of these chains start with a prime, their sum is 12.
 | |
| 
 | |
| What is the sum of all primes less than 40000000 which generate a chain of length 25?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler214()` should return 1677366278943.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler214(), 1677366278943);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler214() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler214();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |