* fix: clean-up Project Euler 121-140 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: missing backticks Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			57 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3ec1000cf542c50fefe
 | ||
| title: 'Problem 127: abc-hits'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301754
 | ||
| dashedName: problem-127-abc-hits
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| The radical of $n$, $rad(n)$, is the product of distinct prime factors of $n$. For example, $504 = 2^3 × 3^2 × 7$, so $rad(504) = 2 × 3 × 7 = 42$.
 | ||
| 
 | ||
| We shall define the triplet of positive integers (a, b, c) to be an abc-hit if:
 | ||
| 
 | ||
| 1. $GCD(a, b) = GCD(a, c) = GCD(b, c) = 1$
 | ||
| 2. $a < b$
 | ||
| 3. $a + b = c$
 | ||
| 4. $rad(abc) < c$
 | ||
| 
 | ||
| For example, (5, 27, 32) is an abc-hit, because:
 | ||
| 
 | ||
| 1. $GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1$
 | ||
| 2. $5 < 27$
 | ||
| 3. $5 + 27 = 32$
 | ||
| 4. $rad(4320) = 30 < 32$
 | ||
| 
 | ||
| It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for $c < 1000$, with $\sum{c} = 12523$.
 | ||
| 
 | ||
| Find $\sum{c}$ for $c < 120000$.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `abcHits()` should return `18407904`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(abcHits(), 18407904);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function abcHits() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| abcHits();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |