82 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 5900f3a01000cf542c50feb3
 | 
						|
title: 'Problem 52: Permuted multiples'
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 302163
 | 
						|
dashedName: problem-52-permuted-multiples
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
It can be seen that the number, 125874, and its double, 251748, contain exactly the same digits, but in a different order.
 | 
						|
 | 
						|
Find the smallest positive integer, such that multiplied by integers $\\{2, 3, \ldots, n\\}$, contain the same digits.
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`permutedMultiples(2)` should return a number.
 | 
						|
 | 
						|
```js
 | 
						|
assert(typeof permutedMultiples(2) === 'number');
 | 
						|
```
 | 
						|
 | 
						|
`permutedMultiples(2)` should return `125874`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(permutedMultiples(2), 125874);
 | 
						|
```
 | 
						|
 | 
						|
`permutedMultiples(6)` should return `142857`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(permutedMultiples(6), 142857);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
function permutedMultiples(n) {
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
permutedMultiples(2);
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
function permutedMultiples(n) {
 | 
						|
    const isPermutation = (a, b) =>
 | 
						|
        a.length !== b.length
 | 
						|
            ? false
 | 
						|
            : a.split('').sort().join() === b.split('').sort().join();
 | 
						|
 | 
						|
 | 
						|
    let start = 1;
 | 
						|
    let found = false;
 | 
						|
    let result = 0;
 | 
						|
 | 
						|
    while (!found) {
 | 
						|
        start *= 10;
 | 
						|
        for (let i = start; i < start * 10 / n; i++) {
 | 
						|
            found = true;
 | 
						|
            for (let j = 2; j <= n; j++) {
 | 
						|
                if (!isPermutation(i + '', j * i + '')) {
 | 
						|
                    found = false;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (found) {
 | 
						|
                result = i;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
```
 |