Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-330-eulers-number.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

966 B
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4b71000cf542c50ffc9 Problem 330: Euler's Number 5 301988 problem-330-eulers-number

--description--

An infinite sequence of real numbers a(n) is defined for all integers n as follows:

For example,a(0) = 11! + 12! + 13! + ... = e 1 a(1) = e 11! + 12! + 13! + ... = 2e 3 a(2) = 2e 31! + e 12! + 13! + ... = 72 e 6

with e = 2.7182818... being Euler's constant.

It can be shown that a(n) is of the form

A(n) e + B(n)n! for integers A(n) and B(n).

For example a(10) =

328161643 e 65269448610!.

Find A(109) + B(109) and give your answer mod 77 777 777.

--hints--

euler330() should return 15955822.

assert.strictEqual(euler330(), 15955822);

--seed--

--seed-contents--

function euler330() {

  return true;
}

euler330();

--solutions--

// solution required