* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
55 lines
966 B
Markdown
55 lines
966 B
Markdown
---
|
||
id: 5900f4b71000cf542c50ffc9
|
||
title: 'Problem 330: Euler''s Number'
|
||
challengeType: 5
|
||
forumTopicId: 301988
|
||
dashedName: problem-330-eulers-number
|
||
---
|
||
|
||
# --description--
|
||
|
||
An infinite sequence of real numbers a(n) is defined for all integers n as follows:
|
||
|
||
<!-- TODO Use MathJax and re-write from projecteuler.net -->
|
||
|
||
For example,a(0) = 11! + 12! + 13! + ... = e − 1 a(1) = e − 11! + 12! + 13! + ... = 2e − 3 a(2) = 2e − 31! + e − 12! + 13! + ... = 72 e − 6
|
||
|
||
with e = 2.7182818... being Euler's constant.
|
||
|
||
It can be shown that a(n) is of the form
|
||
|
||
A(n) e + B(n)n! for integers A(n) and B(n).
|
||
|
||
For example a(10) =
|
||
|
||
328161643 e − 65269448610!.
|
||
|
||
Find A(109) + B(109) and give your answer mod 77 777 777.
|
||
|
||
# --hints--
|
||
|
||
`euler330()` should return 15955822.
|
||
|
||
```js
|
||
assert.strictEqual(euler330(), 15955822);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler330() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler330();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|