Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
	
		
			1.6 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.6 KiB
		
	
	
	
	
	
	
	
id, challengeType, isHidden, title, forumTopicId
| id | challengeType | isHidden | title | forumTopicId | 
|---|---|---|---|---|
| 5900f3b11000cf542c50fec4 | 5 | false | Problem 69: Totient maximum | 302181 | 
Description
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
| n | Relatively Prime | φ(n) | n/φ(n) | 
|---|---|---|---|
| 2 | 1 | 1 | 2 | 
| 3 | 1,2 | 2 | 1.5 | 
| 4 | 1,3 | 2 | 2 | 
| 5 | 1,2,3,4 | 4 | 1.25 | 
| 6 | 1,5 | 2 | 3 | 
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... | 
| 8 | 1,3,5,7 | 4 | 2 | 
| 9 | 1,2,4,5,7,8 | 6 | 1.5 | 
| 10 | 1,3,7,9 | 4 | 2.5 | 
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
Instructions
Tests
tests:
  - text: <code>totientMaximum()</code> should return a number.
    testString: assert(typeof totientMaximum() === 'number');
  - text: <code>totientMaximum()</code> should return 510510.
    testString: assert.strictEqual(totientMaximum(), 510510);
Challenge Seed
function totientMaximum() {
  // Good luck!
  return true;
}
totientMaximum();
Solution
// solution required