2019-05-01 17:09:01 -04:00
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
#include "triton/driver/buffer.h"
|
|
|
|
#include "triton/driver/backend.h"
|
|
|
|
#include "triton/driver/stream.h"
|
2019-06-05 11:09:41 -07:00
|
|
|
#include "triton/runtime/jit.h"
|
2019-06-06 20:13:26 -07:00
|
|
|
#include "triton/tools/bench.hpp"
|
2019-05-01 17:09:01 -04:00
|
|
|
|
|
|
|
#define EIGEN_USE_GPU
|
|
|
|
#include "tensorflow/core/framework/op.h"
|
|
|
|
#include "tensorflow/core/framework/shape_inference.h"
|
|
|
|
#include "tensorflow/core/framework/op_kernel.h"
|
|
|
|
#include "tensorflow/core/util/cuda_kernel_helper.h"
|
|
|
|
#include "tensorflow/core/util/padding.h"
|
|
|
|
#include "tensorflow/core/util/tensor_format.h"
|
|
|
|
#include "tensorflow/core/framework/common_shape_fns.h"
|
|
|
|
|
|
|
|
using namespace tensorflow;
|
|
|
|
using GPUDevice = Eigen::GpuDevice;
|
|
|
|
|
|
|
|
|
|
|
|
const char* src =
|
|
|
|
R"(
|
2019-06-11 13:27:54 -07:00
|
|
|
const tunable int32 TM = {64, 128};
|
|
|
|
const tunable int32 TN = {64, 128};
|
2019-06-13 17:16:00 -07:00
|
|
|
const tunable int32 TK = {32};
|
2019-05-01 17:09:01 -04:00
|
|
|
const tunable int32 GZ = {1};
|
|
|
|
|
2019-06-05 14:43:38 -07:00
|
|
|
void matmul(restrict read_only fp16 *A, restrict read_only fp16 *B,
|
|
|
|
fp32 *C,
|
2019-05-01 17:09:01 -04:00
|
|
|
int32 M, int32 N, int32 K,
|
|
|
|
int32 lda, int32 ldb, int32 ldc,
|
|
|
|
int32 *locks, int32 grid0, int32 grid1) {
|
|
|
|
int32 rxa[TM] = get_global_range[TM](0);
|
|
|
|
int32 ryb[TN] = get_global_range[TN](1);
|
|
|
|
int32 rz = get_global_range[1](2);
|
|
|
|
int32 rka[TK] = 0 ... TK;
|
|
|
|
int32 rkb[TK] = 0 ... TK;
|
|
|
|
fp32 c[TM, TN] = 0;
|
2019-06-11 13:27:54 -07:00
|
|
|
fp16* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis];
|
|
|
|
fp16* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis];
|
2019-06-12 19:46:43 -07:00
|
|
|
for(int32 k = K; k > 0; k = k - TK){
|
2019-06-11 13:27:54 -07:00
|
|
|
fp16 a[TM, TK] = *pa;
|
|
|
|
fp16 b[TN, TK] = *pb;
|
2019-05-01 17:09:01 -04:00
|
|
|
c = dot(a, trans(b), c);
|
|
|
|
pa = pa + TK*lda;
|
|
|
|
pb = pb + TK*ldb;
|
|
|
|
}
|
|
|
|
int32 rxc[TM] = get_global_range[TM](0);
|
|
|
|
int32 ryc[TN] = get_global_range[TN](1);
|
2019-06-09 14:41:36 -07:00
|
|
|
fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
|
|
|
|
*pc = c;
|
2019-05-01 17:09:01 -04:00
|
|
|
}
|
|
|
|
)";
|
|
|
|
|
|
|
|
|
|
|
|
class BlockSparseGemmOp : public OpKernel {
|
|
|
|
public:
|
|
|
|
explicit BlockSparseGemmOp(OpKernelConstruction* context) : OpKernel(context) {
|
|
|
|
}
|
|
|
|
|
|
|
|
void Compute(OpKernelContext* context){
|
|
|
|
// get device/stream
|
|
|
|
GPUDevice device = context->eigen_device<GPUDevice>();
|
|
|
|
triton::driver::cu_stream sstream(device.stream(), false);
|
|
|
|
triton::driver::context* ctx = sstream.context();
|
|
|
|
triton::driver::stream* stream = &sstream;
|
|
|
|
// get inputs
|
|
|
|
const Tensor& a = context->input(0);
|
|
|
|
const Tensor& b = context->input(1);
|
|
|
|
const Tensor& locks = context->input(2);
|
|
|
|
// get shapes
|
|
|
|
const int32_t M = a.dim_size(0);
|
|
|
|
const int32_t N = b.dim_size(0);
|
|
|
|
const int32_t K = a.dim_size(1);
|
|
|
|
// allocate output
|
|
|
|
Tensor* c = nullptr;
|
|
|
|
TensorShape out_shape({(int64)M, (int64)N});
|
|
|
|
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c));
|
|
|
|
// return early if possible
|
|
|
|
if (out_shape.num_elements() == 0)
|
|
|
|
return;
|
|
|
|
// initialize default compute device
|
|
|
|
triton::jit jit(ctx);
|
|
|
|
// matrix multiplication parameters
|
2019-06-05 14:43:38 -07:00
|
|
|
triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat<Eigen::half>().data(), false);
|
|
|
|
triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat<Eigen::half>().data(), false);
|
2019-05-01 17:09:01 -04:00
|
|
|
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat<float>().data(), false);
|
|
|
|
triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat<int32_t>().data(), false);
|
|
|
|
stream->synchronize();
|
2019-06-06 20:13:26 -07:00
|
|
|
// benchmark a given matrix multiplication kernel
|
|
|
|
auto benchmark = [&](triton::driver::kernel* kernel,
|
|
|
|
triton::jit::launch_information info) {
|
|
|
|
// launch info
|
|
|
|
unsigned TM = info.global_range_size[0];
|
|
|
|
unsigned TN = info.global_range_size[1];
|
|
|
|
unsigned nthreads = info.num_threads;
|
|
|
|
unsigned GZ = jit.get_int("GZ");
|
|
|
|
std::array<size_t, 3> grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ};
|
|
|
|
// set argument
|
|
|
|
kernel->setArg(0, *da.cu());
|
|
|
|
kernel->setArg(1, *db.cu());
|
|
|
|
kernel->setArg(2, *dc.cu());
|
|
|
|
kernel->setArg(3, M);
|
|
|
|
kernel->setArg(4, N);
|
|
|
|
kernel->setArg(5, K);
|
|
|
|
kernel->setArg(6, M);
|
|
|
|
kernel->setArg(7, N);
|
|
|
|
kernel->setArg(8, M);
|
|
|
|
kernel->setArg(9, *dlocks.cu());
|
|
|
|
kernel->setArg(10, grid[0]);
|
|
|
|
kernel->setArg(11, grid[1]);
|
|
|
|
stream->enqueue(kernel, grid, {nthreads, 1, 1});
|
|
|
|
stream->synchronize();
|
|
|
|
double ts = triton::tools::bench([&](){stream->enqueue(kernel, grid, {nthreads, 1, 1});},
|
2019-06-09 14:41:36 -07:00
|
|
|
[&](){ stream->synchronize(); }, ctx->device());
|
2019-06-06 20:13:26 -07:00
|
|
|
return 2.*M*N*K / ts * 1e-3;
|
|
|
|
};
|
2019-05-01 17:09:01 -04:00
|
|
|
// just-in-time compile source-code
|
2019-06-13 17:16:00 -07:00
|
|
|
// jit.autotune("matmul", src, benchmark);
|
2019-06-09 14:41:36 -07:00
|
|
|
// jit.add_module("matmul", src, {4, 2, 8, 4, 2, 32, 1, 4, 1, 1, 8, 8, 8, 1});
|
2019-06-13 17:51:54 -07:00
|
|
|
jit.add_module("matmul", src, {16, 4, 128, 16, 4, 128, 1, 4, 2, 2, 8, 32, 8, 1});
|
2019-06-13 17:16:00 -07:00
|
|
|
// jit.add_module("matmul", src, {8, 8, 128, 16, 8, 128, 2, 2, 2, 2, 16, 32, 8, 1 });
|
2019-06-06 20:34:56 -07:00
|
|
|
triton::driver::kernel* kernel = jit.get_function("matmul");
|
|
|
|
triton::jit::launch_information info = jit.get_launch_info("matmul");
|
2019-06-09 14:41:36 -07:00
|
|
|
std::cout << benchmark(kernel, info) << std::endl;;
|
2019-05-01 17:09:01 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
};
|
|
|
|
|
2019-06-05 14:43:38 -07:00
|
|
|
REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU), BlockSparseGemmOp);
|
|
|
|
REGISTER_OP("Dot")
|
|
|
|
.Input("a: float16")
|
|
|
|
.Input("b: float16")
|
|
|
|
.Input("locks: int32")
|
|
|
|
.Output("c: float32")
|
|
|
|
;
|