[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-11 00:41:40 +00:00
parent be39c1e8bc
commit 56933acae6
156 changed files with 300 additions and 300 deletions

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 214bb4d8d74b485210d6a58c0171223d
config: 0fc89def95e202aaeae8a473ee883030
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

After

Width:  |  Height:  |  Size: 21 KiB

View File

@@ -237,22 +237,22 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
vector-add-performance:
size Triton Torch
0 4096.0 4.800000 9.600000
0 4096.0 4.363636 9.600000
1 8192.0 9.600000 19.200000
2 16384.0 17.454545 38.400001
3 32768.0 34.909091 76.800002
4 65536.0 69.818181 127.999995
2 16384.0 19.200000 38.400001
3 32768.0 38.400001 76.800002
4 65536.0 76.800002 127.999995
5 131072.0 139.636363 219.428568
6 262144.0 219.428568 341.333321
7 524288.0 361.411758 472.615390
6 262144.0 236.307695 341.333321
7 524288.0 341.333321 472.615390
8 1048576.0 472.615390 614.400016
9 2097152.0 599.414644 702.171410
10 4194304.0 702.171410 780.190482
11 8388608.0 768.000002 812.429770
12 16777216.0 812.429770 833.084721
12 16777216.0 809.086412 833.084721
13 33554432.0 831.323480 842.004273
14 67108864.0 841.103727 848.362445
15 134217728.0 845.625825 850.656574
15 134217728.0 846.080710 850.656574
@@ -260,7 +260,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 34.363 seconds)
**Total running time of the script:** ( 1 minutes 35.628 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -278,17 +278,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 149.853661
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 646.736871 163.839992
4 768.0 722.823517 646.736871 162.754967
.. ... ... ... ...
93 12160.0 814.058574 405.755985 198.733401
94 12288.0 814.111783 415.661740 198.895304
95 12416.0 814.163950 412.149375 198.655991
96 12544.0 814.214963 412.971190 198.815254
97 12672.0 814.265046 412.097543 198.873965
93 12160.0 814.058574 405.755985 198.429370
94 12288.0 814.111783 415.661740 198.794749
95 12416.0 814.163950 412.149375 198.358474
96 12544.0 814.214963 412.971190 198.520274
97 12672.0 814.265046 412.097543 198.679085
[98 rows x 4 columns]
@@ -306,7 +306,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 26.378 seconds)
**Total running time of the script:** ( 3 minutes 26.881 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -458,37 +458,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 37.971025 ... 40.140799 40.140799
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 47.396572 47.396572
7 1152.0 44.566925 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 68.147202
9 1408.0 64.138541 ... 69.009825 69.009825
10 1536.0 79.526831 ... 80.430545 80.430545
11 1664.0 62.929456 ... 63.372618 62.929456
12 1792.0 72.983276 ... 63.142831 63.142831
13 1920.0 69.120002 ... 71.626943 70.892307
14 2048.0 73.908442 ... 78.398206 78.033565
15 2176.0 83.155572 ... 87.115360 86.367588
16 2304.0 68.251065 ... 77.307030 77.307030
17 2432.0 71.125224 ... 75.522751 75.320281
18 2560.0 77.833728 ... 82.125311 81.715711
19 2688.0 82.106182 ... 90.966561 90.102270
20 2816.0 80.026067 ... 79.806423 83.392363
21 2944.0 81.166173 ... 83.337844 83.060049
22 3072.0 80.316458 ... 88.750943 87.246694
23 3200.0 79.651524 ... 96.168294 96.676741
24 3328.0 83.034941 ... 85.602017 82.843841
25 3456.0 79.430113 ... 92.033756 84.508982
26 3584.0 84.905939 ... 88.236146 94.548254
27 3712.0 85.455380 ... 85.565182 84.946722
28 3840.0 84.744825 ... 92.895423 85.533390
29 3968.0 91.472214 ... 84.856701 92.093539
30 4096.0 86.591209 ... 94.121827 86.035284
11 1664.0 62.929456 ... 62.929456 62.929456
12 1792.0 72.512412 ... 63.142831 62.790080
13 1920.0 69.120002 ... 71.626943 71.257735
14 2048.0 73.262953 ... 78.033565 77.672296
15 2176.0 83.155572 ... 87.115360 86.739860
16 2304.0 68.446623 ... 77.810656 77.057651
17 2432.0 71.125224 ... 75.320281 75.118889
18 2560.0 77.833728 ... 81.920002 82.125311
19 2688.0 83.552988 ... 90.102270 90.316801
20 2816.0 79.879498 ... 84.197315 83.552120
21 2944.0 78.854483 ... 82.509987 83.617504
22 3072.0 82.420822 ... 89.593522 89.877939
23 3200.0 84.432717 ... 96.385543 95.096582
24 3328.0 82.275764 ... 84.003845 84.695641
25 3456.0 82.099354 ... 91.407671 91.824110
26 3584.0 82.377818 ... 91.380335 93.370085
27 3712.0 84.730571 ... 89.594031 83.876864
28 3840.0 84.615146 ... 92.545605 85.663823
29 3968.0 90.859224 ... 85.932350 86.726322
30 4096.0 93.825748 ... 86.037005 88.475759
[31 rows x 5 columns]
@@ -498,7 +498,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 6 minutes 11.287 seconds)
**Total running time of the script:** ( 6 minutes 4.629 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -240,7 +240,7 @@ References
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.014 seconds)
**Total running time of the script:** ( 0 minutes 0.012 seconds)
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:

View File

@@ -38,36 +38,36 @@ Layer Normalization
layer-norm-backward:
N Triton Torch Apex
0 1024.0 356.173905 99.902435 315.076934
1 1536.0 405.098894 134.050910 344.523365
2 2048.0 491.520012 159.067963 334.367350
3 2560.0 458.507457 182.314537 330.322572
4 3072.0 519.211251 191.501303 321.956335
5 3584.0 554.941930 207.768111 309.410081
6 4096.0 568.231237 220.907859 299.707322
7 4608.0 502.690905 232.336141 287.251954
8 5120.0 527.381977 243.809526 286.433562
9 5632.0 540.671974 244.426754 291.939522
10 6144.0 550.208948 251.202731 288.000001
11 6656.0 530.710976 255.590406 286.793541
12 7168.0 510.480705 253.734520 277.470965
13 7680.0 487.619051 266.358392 284.884090
14 8192.0 468.114289 258.354805 278.481578
15 8704.0 414.476194 267.472468 285.377055
16 9216.0 431.157889 272.394084 289.887291
0 1024.0 356.173905 99.497980 315.076934
1 1536.0 405.098894 134.050910 341.333333
2 2048.0 491.520012 159.067963 321.254900
3 2560.0 458.507457 182.314537 326.808501
4 3072.0 519.211251 191.501303 319.168834
5 3584.0 554.941930 207.768111 308.301075
6 4096.0 561.737163 220.907859 296.096389
7 4608.0 500.416301 232.336141 291.031570
8 5120.0 527.381977 243.809526 289.811322
9 5632.0 540.671974 244.426754 291.310338
10 6144.0 550.208948 251.202731 287.438593
11 6656.0 532.479975 255.590406 286.279570
12 7168.0 510.480705 253.360829 277.470965
13 7680.0 486.332448 266.743841 284.884090
14 8192.0 468.114289 258.354805 278.087683
15 8704.0 414.476194 267.472468 284.987724
16 9216.0 430.319054 272.394084 289.887291
17 9728.0 438.033784 279.942444 288.950501
18 10240.0 442.810829 287.102804 290.153487
18 10240.0 443.610086 287.102804 290.153487
19 10752.0 427.231788 246.699797 289.941565
20 11264.0 427.071098 245.760001 286.069848
21 11776.0 419.946507 249.447482 288.686414
21 11776.0 419.323436 249.667843 288.686414
22 12288.0 415.369018 254.673582 294.617366
23 12800.0 410.695192 253.884294 287.910035
24 13312.0 410.125805 252.559690 289.129403
25 13824.0 404.112047 257.190689 292.056329
26 14336.0 396.844280 256.000002 289.129416
27 14848.0 385.662341 257.479779 288.777966
28 15360.0 378.869469 258.332158 288.225185
29 15872.0 372.000001 261.806182 290.562936
23 12800.0 410.695192 254.094291 288.180121
24 13312.0 410.125805 252.360194 289.129403
25 13824.0 404.112047 257.190689 291.799461
26 14336.0 396.844280 256.000002 288.886653
27 14848.0 386.080180 257.665934 288.544136
28 15360.0 378.869469 258.332158 285.989131
29 15872.0 372.000001 261.626369 290.120338
@@ -339,7 +339,7 @@ Layer Normalization
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 2 minutes 12.415 seconds)
**Total running time of the script:** ( 2 minutes 13.230 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:

View File

@@ -5,16 +5,16 @@
Computation times
=================
**13:24.457** total execution time for **getting-started_tutorials** files:
**13:20.380** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:11.287 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:04.629 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:26.378 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:26.881 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:12.415 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 02:13.230 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:34.363 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:35.628 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.014 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.012 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -327,25 +327,25 @@ for different problem sizes.</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 4.800000 9.600000
0 4096.0 4.363636 9.600000
1 8192.0 9.600000 19.200000
2 16384.0 17.454545 38.400001
3 32768.0 34.909091 76.800002
4 65536.0 69.818181 127.999995
2 16384.0 19.200000 38.400001
3 32768.0 38.400001 76.800002
4 65536.0 76.800002 127.999995
5 131072.0 139.636363 219.428568
6 262144.0 219.428568 341.333321
7 524288.0 361.411758 472.615390
6 262144.0 236.307695 341.333321
7 524288.0 341.333321 472.615390
8 1048576.0 472.615390 614.400016
9 2097152.0 599.414644 702.171410
10 4194304.0 702.171410 780.190482
11 8388608.0 768.000002 812.429770
12 16777216.0 812.429770 833.084721
12 16777216.0 809.086412 833.084721
13 33554432.0 831.323480 842.004273
14 67108864.0 841.103727 848.362445
15 134217728.0 845.625825 850.656574
15 134217728.0 846.080710 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 34.363 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 35.628 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -369,17 +369,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 149.853661
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 646.736871 163.839992
4 768.0 722.823517 646.736871 162.754967
.. ... ... ... ...
93 12160.0 814.058574 405.755985 198.733401
94 12288.0 814.111783 415.661740 198.895304
95 12416.0 814.163950 412.149375 198.655991
96 12544.0 814.214963 412.971190 198.815254
97 12672.0 814.265046 412.097543 198.873965
93 12160.0 814.058574 405.755985 198.429370
94 12288.0 814.111783 415.661740 198.794749
95 12416.0 814.163950 412.149375 198.358474
96 12544.0 814.214963 412.971190 198.520274
97 12672.0 814.265046 412.097543 198.679085
[98 rows x 4 columns]
</pre></div>
@@ -392,7 +392,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 26.378 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 26.881 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -564,42 +564,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 37.971025 ... 40.140799 40.140799
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 47.396572 47.396572
7 1152.0 44.566925 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 68.147202
9 1408.0 64.138541 ... 69.009825 69.009825
10 1536.0 79.526831 ... 80.430545 80.430545
11 1664.0 62.929456 ... 63.372618 62.929456
12 1792.0 72.983276 ... 63.142831 63.142831
13 1920.0 69.120002 ... 71.626943 70.892307
14 2048.0 73.908442 ... 78.398206 78.033565
15 2176.0 83.155572 ... 87.115360 86.367588
16 2304.0 68.251065 ... 77.307030 77.307030
17 2432.0 71.125224 ... 75.522751 75.320281
18 2560.0 77.833728 ... 82.125311 81.715711
19 2688.0 82.106182 ... 90.966561 90.102270
20 2816.0 80.026067 ... 79.806423 83.392363
21 2944.0 81.166173 ... 83.337844 83.060049
22 3072.0 80.316458 ... 88.750943 87.246694
23 3200.0 79.651524 ... 96.168294 96.676741
24 3328.0 83.034941 ... 85.602017 82.843841
25 3456.0 79.430113 ... 92.033756 84.508982
26 3584.0 84.905939 ... 88.236146 94.548254
27 3712.0 85.455380 ... 85.565182 84.946722
28 3840.0 84.744825 ... 92.895423 85.533390
29 3968.0 91.472214 ... 84.856701 92.093539
30 4096.0 86.591209 ... 94.121827 86.035284
11 1664.0 62.929456 ... 62.929456 62.929456
12 1792.0 72.512412 ... 63.142831 62.790080
13 1920.0 69.120002 ... 71.626943 71.257735
14 2048.0 73.262953 ... 78.033565 77.672296
15 2176.0 83.155572 ... 87.115360 86.739860
16 2304.0 68.446623 ... 77.810656 77.057651
17 2432.0 71.125224 ... 75.320281 75.118889
18 2560.0 77.833728 ... 81.920002 82.125311
19 2688.0 83.552988 ... 90.102270 90.316801
20 2816.0 79.879498 ... 84.197315 83.552120
21 2944.0 78.854483 ... 82.509987 83.617504
22 3072.0 82.420822 ... 89.593522 89.877939
23 3200.0 84.432717 ... 96.385543 95.096582
24 3328.0 82.275764 ... 84.003845 84.695641
25 3456.0 82.099354 ... 91.407671 91.824110
26 3584.0 82.377818 ... 91.380335 93.370085
27 3712.0 84.730571 ... 89.594031 83.876864
28 3840.0 84.615146 ... 92.545605 85.663823
29 3968.0 90.859224 ... 85.932350 86.726322
30 4096.0 93.825748 ... 86.037005 88.475759
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 11.287 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 4.629 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -372,7 +372,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.014 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 356.173905 99.902435 315.076934
1 1536.0 405.098894 134.050910 344.523365
2 2048.0 491.520012 159.067963 334.367350
3 2560.0 458.507457 182.314537 330.322572
4 3072.0 519.211251 191.501303 321.956335
5 3584.0 554.941930 207.768111 309.410081
6 4096.0 568.231237 220.907859 299.707322
7 4608.0 502.690905 232.336141 287.251954
8 5120.0 527.381977 243.809526 286.433562
9 5632.0 540.671974 244.426754 291.939522
10 6144.0 550.208948 251.202731 288.000001
11 6656.0 530.710976 255.590406 286.793541
12 7168.0 510.480705 253.734520 277.470965
13 7680.0 487.619051 266.358392 284.884090
14 8192.0 468.114289 258.354805 278.481578
15 8704.0 414.476194 267.472468 285.377055
16 9216.0 431.157889 272.394084 289.887291
0 1024.0 356.173905 99.497980 315.076934
1 1536.0 405.098894 134.050910 341.333333
2 2048.0 491.520012 159.067963 321.254900
3 2560.0 458.507457 182.314537 326.808501
4 3072.0 519.211251 191.501303 319.168834
5 3584.0 554.941930 207.768111 308.301075
6 4096.0 561.737163 220.907859 296.096389
7 4608.0 500.416301 232.336141 291.031570
8 5120.0 527.381977 243.809526 289.811322
9 5632.0 540.671974 244.426754 291.310338
10 6144.0 550.208948 251.202731 287.438593
11 6656.0 532.479975 255.590406 286.279570
12 7168.0 510.480705 253.360829 277.470965
13 7680.0 486.332448 266.743841 284.884090
14 8192.0 468.114289 258.354805 278.087683
15 8704.0 414.476194 267.472468 284.987724
16 9216.0 430.319054 272.394084 289.887291
17 9728.0 438.033784 279.942444 288.950501
18 10240.0 442.810829 287.102804 290.153487
18 10240.0 443.610086 287.102804 290.153487
19 10752.0 427.231788 246.699797 289.941565
20 11264.0 427.071098 245.760001 286.069848
21 11776.0 419.946507 249.447482 288.686414
21 11776.0 419.323436 249.667843 288.686414
22 12288.0 415.369018 254.673582 294.617366
23 12800.0 410.695192 253.884294 287.910035
24 13312.0 410.125805 252.559690 289.129403
25 13824.0 404.112047 257.190689 292.056329
26 14336.0 396.844280 256.000002 289.129416
27 14848.0 385.662341 257.479779 288.777966
28 15360.0 378.869469 258.332158 288.225185
29 15872.0 372.000001 261.806182 290.562936
23 12800.0 410.695192 254.094291 288.180121
24 13312.0 410.125805 252.360194 289.129403
25 13824.0 404.112047 257.190689 291.799461
26 14336.0 396.844280 256.000002 288.886653
27 14848.0 386.080180 257.665934 288.544136
28 15360.0 378.869469 258.332158 285.989131
29 15872.0 372.000001 261.626369 290.120338
</pre></div>
</div>
<div class="line-block">
@@ -487,7 +487,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.415 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.230 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>13:24.457</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:20.380</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:11.287</p></td>
<td><p>06:04.629</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:26.378</p></td>
<td><p>03:26.881</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.415</p></td>
<td><p>02:13.230</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:34.363</p></td>
<td><p>01:35.628</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.014</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 2b28432cf30a9c94dda971dc95e6e3c5
config: c335ebe116c5e76aa9062e08c7bd94e6
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More