[python] fixed various issues in pytorch supoport

This commit is contained in:
Philippe Tillet
2019-09-05 00:19:42 -04:00
parent 945b5d0de9
commit ed0f706005
8 changed files with 182 additions and 92 deletions

View File

@@ -34,16 +34,18 @@ if(BUILD_PYTHON_MODULE)
message(STATUS "Adding Python module")
# PyBind11 wrapper source file
file(GLOB_RECURSE PYTHON_SRC python/src/tensorflow.cc)
# update include directory
include_directories(python/src/ ${PYTHON_INCLUDE_DIRS} ${TF_INCLUDE_DIRS})
# update link directories
link_directories(${TF_LIB_DIRS})
# extra tensorflow ops (e.g., alloc_empty)
file(GLOB_RECURSE EXTRA_TF_OPS_SRC python/src/tensorflow/*.cc)
add_library(extra_tf_ops SHARED ${EXTRA_TF_OPS_SRC})
target_link_libraries(extra_tf_ops triton ${TF_LIBS})
target_compile_definitions(extra_tf_ops PRIVATE "-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI}")
if(TF_LIBS)
# extra tensorflow ops (e.g., alloc_empty)
# update directories
link_directories(${TF_LIB_DIRS})
include_directories(python/src/ ${PYTHON_INCLUDE_DIRS} ${TF_INCLUDE_DIRS})
# get sources
file(GLOB_RECURSE EXTRA_TF_OPS_SRC python/src/tensorflow/*.cc)
add_library(extra_tf_ops SHARED ${EXTRA_TF_OPS_SRC})
# create target
target_link_libraries(extra_tf_ops triton ${TF_LIBS})
target_compile_definitions(extra_tf_ops PRIVATE "-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI}")
endif()
endif()

View File

@@ -1,14 +1,13 @@
import numpy as np
import tensorflow as tf
import triton
def run_dot():
def run_tf():
import tensorflow as tf
M, N, K = 128, 128, 128
a = tf.placeholder(tf.float32, shape=[M, K])
b = tf.placeholder(tf.float32, shape=[N, K])
_dot = triton.ops.dot.apply
tr_c = _dot(a, b, transpose_a = False, transpose_b = True)
tr_d = _dot(tr_c, b, transpose_a = True, transpose_b = False)
tr_c = triton.ops.dot(a, b, transpose_a = False, transpose_b = True)
tr_d = triton.ops.dot(tr_c, b, transpose_a = True, transpose_b = False)
tf_c = tf.matmul(a, b, transpose_a = False, transpose_b = True)
tf_d = tf.matmul(tf_c, b, transpose_a = True, transpose_b = False)
# Gradient
@@ -28,4 +27,13 @@ def run_dot():
dif = np.abs(result[0][0] - result[1][0])
print("dif: %f" % np.max(dif))
run_dot()
def run_torch():
import torch as th
M, N, K = 128, 128, 128
a = th.randn(M, K).cuda()
b = th.randn(K, N).cuda()
th_c = th.matmul(a, b)
tr_c = triton.ops.dot(a, b)
print(c)
run_torch()

View File

@@ -41,18 +41,22 @@ class CMakeBuild(build_ext):
python_include_dirs = distutils.sysconfig.get_python_inc()
python_lib_dirs = distutils.sysconfig.get_config_var('LIBDIR')
# tensorflow directories
import tensorflow as tf
tf_abi = tf.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in tf.__dict__ else 0
tf_include_dirs = tf.sysconfig.get_include()
tf_libs = tf.sysconfig.get_link_flags()[1].replace('-l', '')
cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir,
'-DBUILD_TESTS=OFF',
'-DBUILD_PYTHON_MODULE=ON',
'-DPYTHON_INCLUDE_DIRS=' + python_include_dirs,
'-DTF_INCLUDE_DIRS=' + tf_include_dirs,
'-DTF_LIB_DIRS=' + tf.sysconfig.get_lib(),
'-DTF_LIBS=' + tf_libs,
'-DTF_ABI=' + str(tf_abi)]
'-DPYTHON_INCLUDE_DIRS=' + python_include_dirs]
# tensorflow compatibility
try:
import tensorflow as tf
tf_abi = tf.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in tf.__dict__ else 0
tf_include_dirs = tf.sysconfig.get_include()
tf_libs = tf.sysconfig.get_link_flags()[1].replace('-l', '')
cmake_args += ['-DTF_INCLUDE_DIRS=' + tf_include_dirs,
'-DTF_LIB_DIRS=' + tf.sysconfig.get_lib(),
'-DTF_LIBS=' + tf_libs,
'-DTF_ABI=' + str(tf_abi)]
except ModuleNotFoundError:
pass
cfg = 'Debug' if self.debug else 'Release'
build_args = ['--config', cfg]

View File

@@ -315,16 +315,8 @@ gen_tf_register_op(oss, cc_name, fn->args(), outputs);
inline std::string to_torch_ty(ir::type *ty) {
if(ty->is_integer_ty(1))
return "bool";
if(ty->is_integer_ty(8))
return "int8";
if(ty->is_integer_ty(16))
return "int16";
if(ty->is_integer_ty(32))
return "int32";
if(ty->is_integer_ty(64))
return "int64";
if(ty->is_integer_ty())
return "int64_t";
if(ty->is_half_ty())
return "float16";
if(ty->is_float_ty())
@@ -332,7 +324,29 @@ inline std::string to_torch_ty(ir::type *ty) {
if(ty->is_double_ty())
return "float64";
if(ty->is_pointer_ty())
return "Tensor";
return "torch::Tensor";
throw std::runtime_error("unknown type");
}
inline std::string to_c_ty(ir::type *ty) {
if(ty->is_integer_ty(1))
return "bool";
if(ty->is_integer_ty(8))
return "int8_t";
if(ty->is_integer_ty(16))
return "int16_t";
if(ty->is_integer_ty(32))
return "int32_t";
if(ty->is_integer_ty(64))
return "int64_t";
if(ty->is_half_ty())
return "float16";
if(ty->is_float_ty())
return "float32";
if(ty->is_double_ty())
return "float64";
if(ty->is_pointer_ty())
return "drv::cu_buffer";
throw std::runtime_error("unknown type");
}
@@ -352,15 +366,22 @@ void gen_torch_signature(std::ostringstream& oss,
out_types.push_back((*it)->get_type());
}
oss << "std::tuple<";
for(size_t i = 0; i < out_types.size(); i++){
if(i > 0)
oss << ", ";
oss << to_torch_ty(out_types[i]);
std::string ret_ty;
if(out_types.empty())
ret_ty = "void";
else{
ir::type* ty = out_types[0];
ret_ty = to_torch_ty(ty);
if(out_types.size() > 1){
for(size_t i = 1; i < out_types.size(); i++)
if(out_types[i] != ty)
throw std::runtime_error("outputs of different types not supported by pytorch");
ret_ty = "std::vector<" + ret_ty + ">";
}
}
oss << "> ";
oss << name << "(";
oss << "int64 id" << std::endl;
oss << ret_ty << " " << name << "(";
oss << "int64_t id, ";
for(size_t i = 0; i < args.size(); i++) {
ir::argument* arg = args[i];
if(i > 0)
@@ -370,9 +391,16 @@ void gen_torch_signature(std::ostringstream& oss,
oss << ")";
}
void gen_torch_init_driver(std::ostringstream &oss) {
void gen_torch_init_driver(std::ostringstream &oss,
const std::vector<ir::argument*>&args) {
ir::argument* tensor = nullptr;
for(ir::argument* arg: args)
if(arg->get_type()->is_pointer_ty()){
tensor = arg;
break;
}
oss << " // Wrap CUDA handles" << std::endl;
oss << " c10::DeviceIndex device = torcha.storage().device().index();" << std::endl;
oss << " c10::DeviceIndex device = " << tensor->get_name() << ".storage().device().index();" << std::endl;
oss << " // Get stream" << std::endl;
oss << " CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(device).stream();" << std::endl;
oss << " triton::driver::cu_stream stream(custream, false);" << std::endl;
@@ -383,10 +411,12 @@ void gen_torch_make_handles(std::ostream &os,
const std::vector<ir::argument*>& args) {
for(unsigned i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
if(!arg->get_type()->is_pointer_ty())
continue;
const std::string& name = arg->get_name();
os << " drv::cu_buffer cu_" + name + "(ctx, " + name + ".storage().size(), (CUdeviceptr)" + name + ".storage.data(), false);\n ";
ir::type* ty = arg->get_type();
if(!ty->is_pointer_ty())
os << " " << to_c_ty(ty) << " arg_" << name << " = " << name << ";" << std::endl;
else
os << " drv::cu_buffer arg_" + name + "(ctx, " + name + ".storage().size(), (CUdeviceptr)" + name + ".storage().data(), false);" << std::endl;
}
}
@@ -394,19 +424,28 @@ void gen_torch_make_launch_function(std::ostream &os, const std::vector<ir::argu
os << " (*id_fn_map.at(id))({";
for(unsigned i = 0; i < args.size() ; i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
std::string name = "arg_" + arg->get_name();
if(arg->get_type()->is_pointer_ty())
name = "&cu_" + name;
name = "&" + name;
if(i > 0)
os << ", ";
os << name;
}
os << "}, *id_grid_map.at(id), stream); \n";
os << "}, *id_grid_map.at(id), &stream);\n";
}
void gen_torch_ret(std::ostream &os, const std::vector<std::string>& outputs) {
os << " return {";
for(size_t i = 0; i < outputs.size(); i++){
if(i > 0)
os << ", ";
os << outputs[i];
}
os << "};" << std::endl;
}
std::tuple<std::string,
std::string> make_pytorch_src(const std::string& src,
std::string> make_torch_src(const std::string& src,
const std::vector<std::string>& outputs,
const runtime::function::options_space_t& opt) {
// triton-ir code-gen
@@ -423,6 +462,10 @@ std::tuple<std::string,
#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include "triton/runtime/function.h"
#include "torch/extension.h"
#include "torch/script.h"
#include "ATen/cuda/CUDAContext.h"
#include "ATen/cuda/detail/CUDAHooks.h"
namespace rt = triton::runtime;
namespace drv = triton::driver;
@@ -434,12 +477,17 @@ extern std::map<size_t, std::shared_ptr<rt::function>> id_fn_map;
gen_torch_signature(oss, fn, outputs, name);
oss << " {" << std::endl;
gen_torch_init_driver(oss);
gen_torch_init_driver(oss, fn->args());
gen_torch_make_handles(oss, fn->args());
gen_torch_make_launch_function(oss, fn->args());
oss << std::endl << "}";
gen_torch_ret(oss, outputs);
oss << "}" << std::endl;
oss << std::endl;
oss << std::endl;
oss << "static auto registry = torch::jit::RegisterOperators(\"triton::" << name << "\", &" << name << ");" << std::endl;
return {oss.str(), name};
}
@@ -453,7 +501,7 @@ PYBIND11_MODULE(libtriton, m) {
m.def("make_tensorflow_src", &make_tensorflow_src,
"Creates C++ source code for a custom Tensorflow op "
"corresponding to the specified Triton kernel");
m.def("make_pytorch_src", &make_pytorch_src,
m.def("make_torch_src", &make_torch_src,
"Creates C++ source code for a custom PyTorch op ");
// bindings for triton classes

View File

@@ -9,6 +9,13 @@ torch = None
tensorflow = None
tf_extra_ops = None
def to_str(framework):
if framework == tensorflow_id:
return 'tensorflow'
elif framework == torch_id:
return 'torch'
else:
assert False
def _import_torch():
global torch

View File

@@ -66,16 +66,19 @@ def _build(src, path, framework):
include_dirs += [fw.tensorflow.sysconfig.get_include()]
include_dirs += ['/usr/local/cuda/include/']
libraries += [fw.tensorflow.sysconfig.get_link_flags()[1].replace('-l', '')]
ABI = fw.tensorflow.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in fw.tensorflow.__dict__ else 0
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={ABI}'.format(ABI=ABI)]
abi = fw.tensorflow.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in fw.tensorflow.__dict__ else 0
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={abi}'.format(abi=abi)]
elif framework == fw.torch_id:
prefix = os.path.dirname(torch.__file__)
prefix = os.path.dirname(fw.torch.__file__)
library_dirs += [os.path.join(prefix, 'lib')]
include_dirs += [os.path.join(prefix, 'lib', 'include'),
include_dirs += ['/usr/local/cuda/include/',
os.path.join(prefix, 'lib', 'include'),
os.path.join(prefix, 'lib', 'include', 'torch', 'csrc', 'api', 'include'),
os.path.join(prefix, 'include'),
os.path.join(prefix, 'include', 'torch', 'csrc', 'api', 'include')]
libraries += ['torch']
abi = fw.torch._C._GLIBCXX_USE_CXX11_ABI
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={abi}'.format(abi=abi)]
else:
assert False
# extra arguments
@@ -84,7 +87,7 @@ def _build(src, path, framework):
depends = [os.path.realpath(libtriton.__file__)]
# create extension module
ext = setuptools.Extension(
name = 'tensorflow',
name = fw.to_str(framework),
language = 'c++',
sources = [src],
include_dirs = include_dirs,
@@ -124,14 +127,14 @@ def _cvt_to_def_str(obj, framework):
fw.tensorflow.float64: 'double'}[obj]
# torch type
elif framework == fw.torch_id:
if isinstance(obj, torch.dtype):
return {torch.int8: 'char',
torch.int16: 'short',
torch.int32: 'int',
torch.int64: 'long',
torch.float16: 'half',
torch.float32: 'float',
torch.float64: 'double'}[obj]
if isinstance(obj, fw.torch.dtype):
return {fw.torch.int8: 'char',
fw.torch.int16: 'short',
fw.torch.int32: 'int',
fw.torch.int64: 'long',
fw.torch.float16: 'half',
fw.torch.float32: 'float',
fw.torch.float64: 'double'}[obj]
else:
assert False
# default
@@ -146,8 +149,8 @@ def _make_framework_op(src, outputs, options, framework):
if framework == fw.tensorflow_id:
return fw.tensorflow.load_op_library(so).__dict__[name]
elif framework == fw.torch_id:
torch.ops.load_library(so)
return torch.ops.triton.__dict__[name]
fw.torch.ops.load_library(so)
return getattr(fw.torch.ops.triton, name)
else:
assert False
@@ -171,7 +174,12 @@ class kernel:
self.fw_op = None
self.src = src
self.outputs = outputs
self.framework = fw._find_framework(framework)
self.framework = framework
def _init_framework(self):
if self.framework is not None:
return
self.framework = fw._find_framework(self.framework)
if self.framework == fw.tensorflow_id:
fw._import_tensorflow()
fw._import_tf_extra_ops()
@@ -180,8 +188,8 @@ class kernel:
else:
assert False
def __call__(self, *args, **kwargs):
self._init_framework()
# create a new framework op when defines are different
key = '-'.join(['{key}-{val}'.format(key=key, val=val) for key, val in kwargs.items()])
if key not in self.fw_id.keys():
@@ -212,4 +220,9 @@ class kernel:
# create operands
op_args = [x.handle if isinstance(x, triton.utils.scalar) else x for x in args[:-1]]
# call framework function
return self.fw_op(*op_args, id=op_id)
if self.framework == fw.tensorflow_id:
return self.fw_op(*op_args, id=op_id)
elif self.framework == fw.torch_id:
return self.fw_op(op_id, *op_args)
else:
assert False

View File

@@ -1,6 +1,6 @@
import triton
class dot(triton.function):
class _dot(triton.function):
src = """
void dot(TYPE * A, TYPE * B, TYPE * C,
@@ -78,30 +78,32 @@ void dot(TYPE * A, TYPE * B, TYPE * C,
'BROADCAST_BK': 'newaxis, :' if transpose_b else ':, newaxis',
'BROADCAST_BN': ':, newaxis' if transpose_b else 'newaxis, :',
'SHAPE_B' : 'TN, TK' if transpose_b else 'TK, TN'}
return dot.kernel(a, b, c, M, N, Ka, lda, ldb, ldc, grid,
return _dot.kernel(a, b, c, M, N, Ka, lda, ldb, ldc, grid,
AT = transpose_a, BT = transpose_b, TYPE = dtype,
TM = [64, 128], TN = [64, 128], TK = [8], **macros)
@staticmethod
def forward(ctx, a, b, transpose_a = False, transpose_b = False):
ctx.save_for_backward(a, b, transpose_a, transpose_b)
return dot._call(a, b, transpose_a, transpose_b)
return _dot._call(a, b, transpose_a, transpose_b)
@staticmethod
def backward(ctx, dy):
a, b, t_a, t_b = ctx.saved_tensors
if not t_a and not t_b:
da = dot._call(dy, b, False, True)
db = dot._call(a, dy, True, False)
da = _dot._call(dy, b, False, True)
db = _dot._call(a, dy, True, False)
elif not t_a and t_b:
da = dot._call(dy, b, False, False)
db = dot._call(dy, a, True, False)
da = _dot._call(dy, b, False, False)
db = _dot._call(dy, a, True, False)
elif t_a and not t_b:
da = dot._call(b, dy, False, True)
db = dot._call(a, dy, False, False)
da = _dot._call(b, dy, False, True)
db = _dot._call(a, dy, False, False)
elif t_a and t_b:
da = dot._call(b, dy, True, True)
db = dot._call(dy, a, True, True)
da = _dot._call(b, dy, True, True)
db = _dot._call(dy, a, True, True)
else:
assert False
return [da, db, None, None, None, None, None, None, None]
return [da, db, None, None, None, None, None, None, None]
dot = _dot.apply

View File

@@ -7,12 +7,13 @@ def cdiv(a, b):
def empty(shapes, dtype, framework = None):
framework = fw._find_framework(framework)
if framework == fw.tensorflow_id:
fw._import_tensorflow()
args = [x.handle if isinstance(x, scalar) else x for x in shapes]
args = fw.tensorflow.stack(args)
return fw.tf_extra_ops.alloc_empty(args, T = dtype)
elif framework == fw.torch_id:
_import_torch()
return fw.torch.empty(*shapes)
fw._import_torch()
return fw.torch.empty(*shapes).cuda()
class lazy_shape:
@@ -22,15 +23,20 @@ class lazy_shape:
def __getitem__(self, key):
return scalar(self.shape[key])
def shape(A) :
fw._import_tensorflow()
return lazy_shape(fw.tensorflow.shape(A))
def shape(A, framework = None) :
framework = fw._find_framework(framework)
if framework == fw.tensorflow_id:
fw._import_tensorflow()
return lazy_shape(fw.tensorflow.shape(A))
else:
return A.shape
class scalar:
def __init__(self, x):
def __init__(self, x, framework = None):
self.id = libtriton.make_scalar_id()
fw._import_tf_extra_ops()
self.handle = fw.tf_extra_ops.register_scalar(x, id=self.id)
self.assume_initialized = False