Commit Graph

108 Commits

Author SHA1 Message Date
donproc
4640023d9b [Triton-MLIR][Backend]add atomic rmw without mask (#842)
add atomic without mask

Co-authored-by: dongdongl <dongdongl@nvidia.com>
2022-11-10 08:15:58 +08:00
Yan Chunwei
0c87360657 [Triton-MLIR][Backend] Port FMADot conversion for DotOp (#844)
Co-authored-by: ben-zhang-609 <benzh609@gmail.com>
2022-11-09 12:57:50 +08:00
Yan Chunwei
de5b84c476 [Triton-MLIR][Backend] Fix mma<v2> int8 precision error (#850)
Fix mma.16816 s8 precision error

Co-authored-by: ben-zhang-609 <benzh609@gmail.com>
2022-11-09 12:23:43 +08:00
Qingyi Liu
e517b58d59 [Triton-MLIR] Minor fixes to enable fused-softmax and layer-norm tutorials (#835) 2022-11-09 02:18:56 +00:00
Keren Zhou
2da71b2aaa [Triton-MLIR] Increase block size K to completely eliminate shared memory bank conflicts (#862) 2022-11-08 17:39:23 -08:00
goostavz
080b4addf8 [Triton-MLIR][Backend] Fix the order in linear/delinear and a few bugs in reduce conversion (#851)
1, fix the order in linearize/delinearize, which fix the error of order
in emitIndices;
2, fix the selecting of fast implementation in reduce codegen;
3, fix the redundant barrier in reduce codegen;
4, fix the index mapping of the second round of warp_shuffle in shuffle
version of reduce codegen.

Co-authored-by: Keren Zhou <kerenzhou@openai.com>
2022-11-08 10:10:09 -08:00
Philippe Tillet
976cf12af1 [OPTIMIZER] Fixed memory coalescing (#847) 2022-11-07 06:22:18 -08:00
Keren Zhou
fdd59900f7 [Triton-MLIR] Replace triton.extract_slice with tensor.extract_slice and support more general tensor slicing (#837)
## Features

- Allow taking a block of tensor slice, as long as each dimension is
contiguous (unit stride).
- Fix some problems in `insert_slice_async`'s semantic.
- More general verification for ops that return shared layout encoding.

## Known Limitations

- `insert_slice_async` still uses the old semantic. May submit another
PR later to support similar semantic like `tensor.extract_slice`.
- No encoding verification for `tensor.extract_slice`.
- 3d tensor ops are broken.
- Strided accesses are not allowed.
- May cause a little performance slowdown since we are passing strides
as values but not constants (e.g., int).
It would be difficult to pass strides as attributes when we have control
flows. A block argument is possible to accept tensors with different
strides.
2022-11-06 22:59:03 -08:00
Philippe Tillet
91a9773b38 [OPTIMIZER] Minor bugfixes that affected matmul codegen performance (#834) 2022-11-02 22:58:09 -07:00
ben-zhang-609
5feb6e24f9 [Triton-MLIR]Add ptx vprintf support (#825)
Not know how to write unit test for this feature.

Co-authored-by: Yan Chunwei <yanchunwei@outlook.com>
2022-11-02 16:39:09 +08:00
Philippe Tillet
12d60cb4a3 [BACKEND] Added support for 1D conversion blocked -> slice (#831) 2022-11-01 13:19:58 -07:00
Qingyi Liu
cdc0ec5077 [Triton-MLIR][Backend] Fix reduce conversion and unit tests for int dtypes (#826) 2022-11-01 17:42:59 +08:00
Yan Chunwei
031c2ae77b [Triton-MLIR][BACKEND] Port the mma<v1> conversion (#815)
This PR does

- port the mma<v1> related code, and support dot conversion and
convert_layout[shared->dot_op<mma<v1>>]
- add a lit test for dot v1
2022-11-01 09:42:14 +08:00
Philippe Tillet
7dfab26a39 [FRONTEND][BACKEND] Fixed various bugs (#819)
- Fixed bugs on layout conversions for int1 data (we should use int8
internally for int1 data to prevent llvm from using vec<i1> which has
different semantics)
- Fixed semantics of some casts to bool in the frontend
2022-10-29 06:34:14 +00:00
Ian Bearman
f2106d0aa2 [BUILD] Fix Warnings and Enable Warnings as Errors (#794) 2022-10-28 12:36:09 -07:00
Philippe Tillet
ac0f6793cc [BACKEND] Added support for scalars in LoadOp / StoreOp / ElementwiseOp (#814)
Also fixed various errors that showed up in `test_core.py`, and added more TODOs for open (hopefully relatively minor) issues
2022-10-28 16:17:55 +08:00
ben-zhang-609
3685194456 [Triton-MLIR][BACKEND] Add elementwise ops and tests (#804)
Co-authored-by: Keren Zhou <kerenzhou@openai.com>
2022-10-28 05:26:29 +00:00
Keren Zhou
3b80801dff [Triton-MLIR][Backend] Fix many problems to get the pipeline working (#809)
1. Rewrite code generation of insert_slice_async.
2. Correct the wrong index passed to extract_slice in pipeline.
3. Add a prologue in pipeline to wait for dangling cp.asyncs.  
4. Move scf to cf conversion inside TritonGPUToLLVM because we need to
perform membar before scf to cf. It shouldn't be a technical limitation
and could be improved by a more general membar analysis.
5. Use an attribute to memoize the shared memory size and support
dynamic shared memory.
6. Prevent the combine pass to reorder insert_slice and extract_slice
across async_wait

Co-authored-by: Superjomn <yanchunwei@outlook.com>
2022-10-27 22:09:06 -07:00
Qingyi Liu
42db3538e4 [Triton-MLIR][Backend] Add ReduceOpConversion into TritonGPUToLLVM conversion (#774)
What is done in this PR:
- [x] Add `ConvertLayout`, `getSizePerThread` and `getShapePerCTA`
implementation for `SliceEncodingAttr`
- [x] Split `emitIndices` into two phases:
`emitBaseIndexForBlockedLayout` and `emitOffsetForBlockedLayout`
- [x] Add `ReduceOpConversion::matchAndRewriteBasic` implementation
- [x] Add `ReduceOpConversion::matchAndRewriteFast` implementation with
ptx instruction `shfl.sync`
- [x] Add support for scalar value in `StoreOpConversion`
- [x] Add Reduce1d and Reduce2d unit tests and pass all unit tests

Co-authored-by: Qingyi Liu <liuqingyi1993@gmail.com>
2022-10-28 11:07:45 +08:00
Philippe Tillet
3e6cc6d66c [FRONTEND] Made more tests pass (#805) 2022-10-26 17:47:33 -07:00
goostavz
bb7008651a [Backend] Hacky fix of missing barrier in ConvertLayout blocked->shared (#803)
Barrier should be set by a separate pass, but it seems like there may be some bugs
2022-10-26 13:39:38 -07:00
Yan Chunwei
4dc2396ca0 [Triton-MLIR][BACKEND] Support $c from mma layout in dot (#798)
This PR does

1. Support the case where $c holding a mma layout, this should be useful
in forloop in k-axis in GEMM
2. Fix the `unrealized_conversion_cast` in ConvertLayout[shared->dot_op]

Known issue

1. There is some IO conflict in GEMM with a k-forloop, it is temporarily
solved by [adding a
barrier](https://github.com/openai/triton/pull/798/files#diff-8a9a5a7f4a025fb1299af29d190d5626bd9000406d3ea47c49679272d3d6abe9R3028)
in dot conversion, but we are still working on it, will get a more
generic fix for it in the following PR.
2. The parallel pass will result in a buggy instruction result type
```mlir
%1049 = llvm.inline_asm has_side_effects asm_dialect = att operand_attrs = [] "cp.async.commit_group ;", ""  : () -> !llvm.void
%1050 = builtin.unrealized_conversion_cast %1049 : !llvm.void to !llvm.ptr<f16, 3>
```
So we temporarily disable it.
2022-10-26 10:33:04 +08:00
Philippe Tillet
a2cbe7af91 [FRONTEND] Enhanced support for binary operators (#801)
Disabled modulo test (due to change in behavior for `frem` in nvptx
between llvm-11 and llvm-14) and bfloat16 (will require some work to
emulate in software similar to how it's done in `master`)
2022-10-24 19:47:01 -07:00
Yan Chunwei
877844de4f [Triton-MLIR][BACKEND] add convert_layout[shared->dot_op] converstion to adapt DotOperand layout (#786)
This PR helps to

1. Adapt the existing DotOp conversion to the design of the new
DotOperand layout,
2. Making the DotOp conversion work with both shared-layout inputs case
and dotoperand-layout inputs case for further upstream switch.
2022-10-24 11:40:13 +08:00
goostavz
c4726333bf [Triton-MLIR] Minor fixes related with scf/swizzling support (#791)
1, Disable static loop unrolling in the frontend by default;
2, A minor fix in axisAnalysis in order to support scf;
3, A minor fix in TritonGPUToLLVM to support swizzling.
2022-10-21 11:46:28 +08:00
Yan Chunwei
4464646efb [Triton-MLIR][BACKEND] Fix masked load store op vector size (#785)
Correct the Load/Store Op's vector size with the mask's alignment
correctly considered.

Some cases:

```mlir
// num_warp = 2
// block_size = 128
func @vecadd_mask_align_16(%a_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %b_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, 
  %out_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %n_elements: i32 {tt.divisibility = 16 : i32}) {
    // mask = make_range(128) < n_element
}
```
This should get the vec=2 `ld`/`st` instructions.

While the following example

```mlir
// num_warp = 2
// block_size = 128
func @vecadd_mask_align_16(%a_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %b_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, 
  %out_ptr: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %n_elements: i32) {
    // mask = make_range(128) < n_element
}
```
it should get the vec=1 `ld`/`st` instructions.
2022-10-18 11:43:50 +08:00
Yan Chunwei
1baa4e125f [triton-mlir][BACKEND] decouple loading from mma codegen in dot conversion (#764)
This PR decouples the operand loading from the mma codegen to make it
ready for the ongoing `DotOperandEncodingAttr` migration.
The existing DotOp conversion is composed of the following two
procedures:
1. Loading the $a,$b,$c operand from smem to registers
2. Conducting the MMA instruction codegen.

While in the latest design, the 1st stage should be part of the
`convert_layout(shared_layout) -> dot_operand_layout`, that's why the
decoupling is necessary.

Some details, this PR introduces a `MMA16816ConversionHelper` class, it
has `loadA`, `loadB` and `loadC` methods to help load $a, $b and $c from
smem to registers, both `loadA` and `loadB` methods returns a
`LLVM::Struct` which should be compatible with the new
`DotOperandEncodingAttr` conversion.

The conversion layout for $a and $b is as follows:
```c++
// The layout is a list of Value with coordinate of (i,j), the order is as
// the follows:
// [
//  (0,0), (0,1), (1,0), (1,1), # i=0, j=0
//  (0,2), (0,3), (1,2), (1,3), # i=0, j=1
//  (0,4), (0,5), (1,4), (1,5), # i=0, j=2
//  ...
//  (2,0), (2,1), (3,0), (3,1), # i=1, j=0
//  (2,2), (2,3), (3,2), (3,3), # i=1, j=1
//  (2,4), (2,5), (2,4), (2,5), # i=1, j=2
//  ...
// ]
// i \in [0, n0) and j \in [0, n1)
```
In the `convertDot` method, it takes loaded $a, $b, $c($a and $b are
type of `LLVM::Struct` while $c is a scalar Value), extract the elements
from `LLVM::Struct` following the layout above, and pass the elements to
MMA inline asm.
2022-10-12 10:45:17 +08:00
Yan Chunwei
555f94f9b9 [triton-mlir][BACKEND] Support masked load/store (#657)
This PR does

- fix some bugs to support masked load/store,
- refine frontend, and support the `and` and `or` syntax in mask(by
extending the BoolOp in python ast.visitor), e.g. `tl.store(...,
mask=offset<n and other_conditions)`,
- add `arith.cmpI` and `arith.cmpF` op conversion in backend(required by
mask),
- add more test cases in vecadd.
2022-10-10 13:29:53 +08:00
goostavz
1d772cd843 [Triton-MLIR][Backend] Add SCF lowering in the backend (#750) 2022-10-08 18:36:37 +08:00
goostavz
e843257295 [Backend] Fix a bug in emitIndicesForBlocked (#740) 2022-10-04 21:29:59 -07:00
Keren Zhou
289ff293cc [Triton-MLIR] Generate LLVM/PTX code for async ops (#735) 2022-10-04 09:37:00 -07:00
goostavz
f9d7f2f126 [Triton-MLIR][Backend] Support ConvertLayout blocked->shared and a few fixes related with mma(#716) 2022-10-03 19:33:25 +08:00
Yan Chunwei
df8d276089 [Triton-MLIR][Backend] Fix smem base bug in dot codegen (#715)
Get SMEM base address of an input operand from `adapter.arg()` instead
of `getSharedMemoryBase(arg, ...)`, for the latter one not works with
memory alias, for example:

```llvm
%a = extract_slice %b, %offset
%c = dot %a, %d
```

`%a` should have different smem base address from `%b`
2022-09-27 17:28:17 +08:00
Yan Chunwei
3a84278530 [Triton-MLIR][BACKEND] Refine dot conversion (#710)
This PR does

1. Refine the dot conversion
2. some other tiny code refinement
2022-09-27 14:38:34 +08:00
goostavz
61b61755e5 [Triton-MLIR][Backend] Support layout conversion between mmaLayout and blockedLayout (#693) 2022-09-27 03:58:47 +00:00
Keren Zhou
ecd1bc33df [Triton-MLIR] Keren/code gen for extract slice and alloc tensor (#692)
Co-authored-by: gzhu <goostavz@outlook.com>
2022-09-23 19:38:14 +00:00
Yan Chunwei
922155f1d2 [BACKEND] add dot conversion (mma version=2) (#672)
LLVM Conversion for Dot op.

Due to the lack of `convert_layout`, currently, the dot only supports
the following combination of operands

- `$a` in shared layout
- `$b` in shared layout
- `$c` in MMA layout(but only Splat-like, leaving the generic cases to
`convert_layout`)

This PR focus on `mma.16816` related logic support, leaving the other
cases to the following PR.

Co-authored-by: Philippe Tillet <phil@openai.com>
2022-09-22 20:43:54 -07:00
goostavz
15bfd0cb79 [BACKEND] Support of ConvertLayoutOp from blocked to blocked and SliceLayout with blocked parent (#658) 2022-09-17 14:58:42 -07:00
Shintaro Iwasaki
13669b46a6 [DOCS] Correct spelling (#665)
This PR corrects spelling like #664 for Triton-MLIR. It should not break anything.
2022-09-16 15:07:34 -07:00
Shintaro Iwasaki
43be75ad42 [FRONTEND] Add scalar type support for some ops (#661)
This PR adds basic support for scalar-type inputs to some ops (cast and pointer arithmetics) for Triton-MLIR. Also renames getelementptr -> addptr
2022-09-15 16:12:52 -07:00
Shintaro Iwasaki
297d27e1c8 [Triton-MLIR] add GitHub CI runners (#655)
This PR is to add GitHub Actions runners to the CI for better coverage.
2022-09-14 23:09:56 -07:00
Yan Chunwei
2a852044d9 [BACKEND] Add C++ tests for PTXFormat and some tiny refinement (#109)
This PR does

1. Add some C++ tests for `PTXFormat`
2. Enhance the functionality of `PTXFormat`, make a `PTXInstr` instance
can be called multiple times similar as a C function.
2022-09-09 09:15:07 -07:00
Yan Chunwei
a9464f4993 [Backend] Vectorize Load/Store Ops (#86)
This PR does the following things:

- Code refactoring on Load and Store op codegen, rewrite with same logic
and share much code
- Support the vectorized load/store
2022-09-06 12:28:09 -07:00
Philippe Tillet
a0bab9748e [OPTIMIZER] Coalesce pass no longer takes a num-warps argument (#99)
Improved design to avoid inconsistent `num-warps` value between the pass and the parent module of the operation it processes.
2022-09-05 18:09:02 -07:00
Shintaro Iwasaki
3c635449e5 [Triton] Support math and libdevice ops (#91)
This PR adds basic math ops by using `MathDialect` and `libdevice` ops by using `extern_elementwise`. This is needed to compile some tutorial code (e.g., `softmax`). This PR implements only interface till PTX (so from frontend to TritonGPU-MLIR) 
- Currently till TritonGPU. It cannot be lowered to PTX now.
- No special optimizations (e.g., constant folding etc) are applied.
  - 14.x does not define folders for many operators for math ops, but 15.x seems to increase its coverage: https://github.com/llvm/llvm-project/blob/llvmorg-15.0.0-rc3/mlir/include/mlir/Dialect/Math/IR/MathOps.td
  - No constant folding etc for `libdevice` ops.

```py
import triton
import triton.language as tl
import sys

@triton.jit
def add_kernel(
    x_ptr,
    y_ptr,
    BLOCK_SIZE: tl.constexpr,
):
    offsets = tl.arange(0, BLOCK_SIZE)
    x = tl.load(x_ptr + offsets)
    x = tl.sin(x)
    output = tl.libdevice.sin(x)
    output = tl.libdevice.fdiv_rn(output, output)
    output = tl.libdevice.fmaf_rd(output, output, output)
    tl.store(y_ptr + offsets, output)


if __name__ == "__main__" and len(sys.argv) >= 2:
    signature = "*fp32,*fp32"
    constants = {'BLOCK_SIZE': 1024}
    output = triton.compile(add_kernel, signature, device=0, constants=constants, output="ttgir")
    print(output)
```
->
```llvm
#blocked = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
  func @add_kernel__Pfp32_Pfp32__2c1024(%arg0: !tt.ptr<f32>, %arg1: !tt.ptr<f32>) {
    %0 = tt.make_range {end = 1024 : i32, start = 0 : i32} : tensor<1024xi32, #blocked>
    %1 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<1024x!tt.ptr<f32>, #blocked>
    %2 = tt.getelementptr %1, %0 : tensor<1024x!tt.ptr<f32>, #blocked>
    %3 = tt.load %2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<1024xf32, #blocked>
    %4 = math.sin %3 : tensor<1024xf32, #blocked>
    %5 = tt.ext_elemwise %4 {libname = "libdevice", libpath = "/home/siwasaki/triton/python/triton/language/libdevice.10.bc", symbol = "__nv_sinf"} : tensor<1024xf32, #blocked> -> tensor<1024xf32, #blocked>
    %6 = tt.ext_elemwise %5, %5 {libname = "libdevice", libpath = "/home/siwasaki/triton/python/triton/language/libdevice.10.bc", symbol = "__nv_fdiv_rn"} : tensor<1024xf32, #blocked>, tensor<1024xf32, #blocked> -> tensor<1024xf32, #blocked>
    %7 = tt.ext_elemwise %6, %6, %6 {libname = "libdevice", libpath = "/home/siwasaki/triton/python/triton/language/libdevice.10.bc", symbol = "__nv_fmaf_rd"} : tensor<1024xf32, #blocked>, tensor<1024xf32, #blocked>, tensor<1024xf32, #blocked> -> tensor<1024xf32, #blocked>
    %8 = tt.splat %arg1 : (!tt.ptr<f32>) -> tensor<1024x!tt.ptr<f32>, #blocked>
    %9 = tt.getelementptr %8, %0 : tensor<1024x!tt.ptr<f32>, #blocked>
    tt.store %9, %7 : tensor<1024xf32, #blocked>
    return
  }
}
```
2022-09-01 16:34:27 -07:00
Shintaro Iwasaki
d01353de07 [CI] add assert-enabled MLIR option (#78)
This deprecates the use of release-build LLVM hosted by the LLVM project, which makes debugging harder for developers.

This PR implements the following solution:
1. Create LLVM release tarballs with assert enabled on our own (using Docker)
2. Host them in our own GitHub repositories
3. Use our LLVM for CI and/or development if `TRITON_USE_ASSERT_ENABLED_LLVM=1` is set.
2022-08-31 18:55:32 -07:00
goostavz
bedbf221c0 [BACKEND] Support optional mask in TritonGPUToLLVM (#80)
Co-authored-by: gzhu <gzhu@nvidia.com>
2022-08-24 17:51:37 -07:00
Yan Chunwei
1b513c9866 [BACKEND] Refactoring codegen for LoadOp with PTXFormat (#77)
This PR does following things:

Enhance the PTXFormat by
Introducing PTXBuilder to enable multiple instructions in a single asm program
override PTXInstr's operator() method to enable instr(opr0, opr1) style of setting operands for an instruction
Refactor the PTX code used in LoadOpConversion with PTXFormat

Authored-by: goostavz <gzhu@nvidia.com>
2022-08-23 15:51:13 -07:00
goostavz
de2dd04c8a [BACKEND] two minor bugfix on StoreOpLowering and kernel launch & support optional other in LoadOpLowering (#69)
* [BACKEND] two minor bugfix on StoreOpLowering and kernel launch & support optional other in LoadOpLowering

* Clean code

Co-authored-by: goostavz <gzhu@nvidia.com>
Co-authored-by: Yan Chunwei <yanchunwei@outlook.com>
2022-08-22 21:47:09 -07:00
Yan Chunwei
10ba51c3bb [FRONTEND] add python e2e launch empty kernel test (#68) 2022-08-19 10:46:01 -07:00