* fix: clean-up Project Euler 121-140 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: missing backticks Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
861 B
861 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f3e71000cf542c50fefa | Problem 123: Prime square remainders | 5 | 301750 | problem-123-prime-square-remainders |
--description--
Let p_n
be the $n$th prime: 2, 3, 5, 7, 11, ..., and let r
be the remainder when {(p_n−1)}^n + {(p_n+1)}^n
is divided by {p_n}^2
.
For example, when n = 3, p_3 = 5
, and 4^3 + 6^3 = 280 ≡ 5\\ mod\\ 25
.
The least value of n
for which the remainder first exceeds 10^9
is 7037.
Find the least value of n
for which the remainder first exceeds 10^{10}
.
--hints--
primeSquareRemainders()
should return 21035
.
assert.strictEqual(primeSquareRemainders(), 21035);
--seed--
--seed-contents--
function primeSquareRemainders() {
return true;
}
primeSquareRemainders();
--solutions--
// solution required