Files
gikf 7907f62337 fix(curriculum): clean-up Project Euler 121-140 (#42731)
* fix: clean-up Project Euler 121-140

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: missing backticks

Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing delimiter

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-16 21:38:37 +02:00

861 B
Raw Permalink Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3e71000cf542c50fefa Problem 123: Prime square remainders 5 301750 problem-123-prime-square-remainders

--description--

Let p_n be the $n$th prime: 2, 3, 5, 7, 11, ..., and let r be the remainder when {(p_n1)}^n + {(p_n+1)}^n is divided by {p_n}^2.

For example, when n = 3, p_3 = 5, and 4^3 + 6^3 = 280 ≡ 5\\ mod\\ 25.

The least value of n for which the remainder first exceeds 10^9 is 7037.

Find the least value of n for which the remainder first exceeds 10^{10}.

--hints--

primeSquareRemainders() should return 21035.

assert.strictEqual(primeSquareRemainders(), 21035);

--seed--

--seed-contents--

function primeSquareRemainders() {

  return true;
}

primeSquareRemainders();

--solutions--

// solution required