Files
gikf 7907f62337 fix(curriculum): clean-up Project Euler 121-140 (#42731)
* fix: clean-up Project Euler 121-140

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: missing backticks

Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing delimiter

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-16 21:38:37 +02:00

1.0 KiB
Raw Permalink Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3ec1000cf542c50fefe Problem 127: abc-hits 5 301754 problem-127-abc-hits

--description--

The radical of n, rad(n), is the product of distinct prime factors of n. For example, 504 = 2^3 × 3^2 × 7, so rad(504) = 2 × 3 × 7 = 42.

We shall define the triplet of positive integers (a, b, c) to be an abc-hit if:

  1. GCD(a, b) = GCD(a, c) = GCD(b, c) = 1
  2. a &lt; b
  3. a + b = c
  4. rad(abc) &lt; c

For example, (5, 27, 32) is an abc-hit, because:

  1. GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1
  2. 5 &lt; 27
  3. 5 + 27 = 32
  4. rad(4320) = 30 &lt; 32

It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for c &lt; 1000, with \sum{c} = 12523.

Find \sum{c} for c &lt; 120000.

--hints--

abcHits() should return 18407904.

assert.strictEqual(abcHits(), 18407904);

--seed--

--seed-contents--

function abcHits() {

  return true;
}

abcHits();

--solutions--

// solution required