Files
gikf 7907f62337 fix(curriculum): clean-up Project Euler 121-140 (#42731)
* fix: clean-up Project Euler 121-140

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: missing backticks

Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing delimiter

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-16 21:38:37 +02:00

57 lines
1.0 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f3ec1000cf542c50fefe
title: 'Problem 127: abc-hits'
challengeType: 5
forumTopicId: 301754
dashedName: problem-127-abc-hits
---
# --description--
The radical of $n$, $rad(n)$, is the product of distinct prime factors of $n$. For example, $504 = 2^3 × 3^2 × 7$, so $rad(504) = 2 × 3 × 7 = 42$.
We shall define the triplet of positive integers (a, b, c) to be an abc-hit if:
1. $GCD(a, b) = GCD(a, c) = GCD(b, c) = 1$
2. $a &lt; b$
3. $a + b = c$
4. $rad(abc) &lt; c$
For example, (5, 27, 32) is an abc-hit, because:
1. $GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1$
2. $5 &lt; 27$
3. $5 + 27 = 32$
4. $rad(4320) = 30 &lt; 32$
It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for $c &lt; 1000$, with $\sum{c} = 12523$.
Find $\sum{c}$ for $c &lt; 120000$.
# --hints--
`abcHits()` should return `18407904`.
```js
assert.strictEqual(abcHits(), 18407904);
```
# --seed--
## --seed-contents--
```js
function abcHits() {
return true;
}
abcHits();
```
# --solutions--
```js
// solution required
```