* fix: clean-up Project Euler 221-240 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.3 KiB
1.3 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4511000cf542c50ff63 | Problem 228: Minkowski Sums | 5 | 301871 | problem-228-minkowski-sums |
--description--
Let S_n
be the regular $n$-sided polygon – or shape – whose vertices v_k (k = 1, 2, \ldots, n)
have coordinates:
$$\begin{align} & x_k = cos(\frac{2k - 1}{n} × 180°) \\ & y_k = sin(\frac{2k - 1}{n} × 180°) \end{align}$$
Each S_n
is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.
The Minkowski sum, S + T
, of two shapes S
and T
is the result of adding every point in S
to every point in T
, where point addition is performed coordinate-wise: (u, v) + (x, y) = (u + x, v + y)
.
For example, the sum of S_3
and S_4
is the six-sided shape shown in pink below:

How many sides does S_{1864} + S_{1865} + \ldots + S_{1909}
have?
--hints--
minkowskiSums()
should return 86226
.
assert.strictEqual(minkowskiSums(), 86226);
--seed--
--seed-contents--
function minkowskiSums() {
return true;
}
minkowskiSums();
--solutions--
// solution required