Files
gikf a9418a1fe9 fix(curriculum): clean-up Project Euler 221-240 (#42839)
* fix: clean-up Project Euler 221-240

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-15 14:26:34 +02:00

54 lines
1.3 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4511000cf542c50ff63
title: 'Problem 228: Minkowski Sums'
challengeType: 5
forumTopicId: 301871
dashedName: problem-228-minkowski-sums
---
# --description--
Let $S_n$ be the regular $n$-sided polygon or shape whose vertices $v_k (k = 1, 2, \ldots, n)$ have coordinates:
$$\begin{align}
& x_k = cos(\frac{2k - 1}{n} × 180°) \\\\
& y_k = sin(\frac{2k - 1}{n} × 180°)
\end{align}$$
Each $S_n$ is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.
The Minkowski sum, $S + T$, of two shapes $S$ and $T$ is the result of adding every point in $S$ to every point in $T$, where point addition is performed coordinate-wise: $(u, v) + (x, y) = (u + x, v + y)$.
For example, the sum of $S_3$ and $S_4$ is the six-sided shape shown in pink below:
<img class="img-responsive center-block" alt="image showing S_3, S_4 and S_3 + S_4" src="https://cdn.freecodecamp.org/curriculum/project-euler/minkowski-sums.png" style="background-color: white; padding: 10px;">
How many sides does $S_{1864} + S_{1865} + \ldots + S_{1909}$ have?
# --hints--
`minkowskiSums()` should return `86226`.
```js
assert.strictEqual(minkowskiSums(), 86226);
```
# --seed--
## --seed-contents--
```js
function minkowskiSums() {
return true;
}
minkowskiSums();
```
# --solutions--
```js
// solution required
```