Files
gikf 47fc3c6761 fix(curriculum): clean-up Project Euler 281-300 (#42922)
* fix: clean-up Project Euler 281-300

* fix: missing image extension

* fix: missing power

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing subscript

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-22 12:38:46 +09:00

1.2 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4861000cf542c50ff98 Problem 281: Pizza Toppings 5 301932 problem-281-pizza-toppings

--description--

You are given a pizza (perfect circle) that has been cut into m·n equal pieces and you want to have exactly one topping on each slice.

Let f(m,n) denote the number of ways you can have toppings on the pizza with m different toppings (m ≥ 2), using each topping on exactly n slices (n ≥ 1). Reflections are considered distinct, rotations are not.

Thus, for instance, f(2,1) = 1, f(2,2) = f(3,1) = 2 and f(3,2) = 16. f(3,2) is shown below:

animation with 16 ways to have 3 different toppings on 2 slices each

Find the sum of all f(m,n) such that f(m,n) ≤ {10}^{15}.

--hints--

pizzaToppings() should return 1485776387445623.

assert.strictEqual(pizzaToppings(), 1485776387445623);

--seed--

--seed-contents--

function pizzaToppings() {

  return true;
}

pizzaToppings();

--solutions--

// solution required