Files
gikf 47fc3c6761 fix(curriculum): clean-up Project Euler 281-300 (#42922)
* fix: clean-up Project Euler 281-300

* fix: missing image extension

* fix: missing power

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing subscript

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-22 12:38:46 +09:00

47 lines
1.2 KiB
Markdown

---
id: 5900f4861000cf542c50ff98
title: 'Problem 281: Pizza Toppings'
challengeType: 5
forumTopicId: 301932
dashedName: problem-281-pizza-toppings
---
# --description--
You are given a pizza (perfect circle) that has been cut into $m·n$ equal pieces and you want to have exactly one topping on each slice.
Let $f(m,n)$ denote the number of ways you can have toppings on the pizza with $m$ different toppings ($m ≥ 2$), using each topping on exactly $n$ slices ($n ≥ 1$). Reflections are considered distinct, rotations are not.
Thus, for instance, $f(2,1) = 1$, $f(2,2) = f(3,1) = 2$ and $f(3,2) = 16$. $f(3,2)$ is shown below:
<img class="img-responsive center-block" alt="animation with 16 ways to have 3 different toppings on 2 slices each" src="https://cdn.freecodecamp.org/curriculum/project-euler/pizza-toppings.gif" style="background-color: white; padding: 10px;">
Find the sum of all $f(m,n)$ such that $f(m,n) ≤ {10}^{15}$.
# --hints--
`pizzaToppings()` should return `1485776387445623`.
```js
assert.strictEqual(pizzaToppings(), 1485776387445623);
```
# --seed--
## --seed-contents--
```js
function pizzaToppings() {
return true;
}
pizzaToppings();
```
# --solutions--
```js
// solution required
```