* fix: clean-up Project Euler 381-400 * fix: missing image extension * fix: missing subscripts Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
918 B
918 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4ed1000cf542c50ffff | Problem 383: Divisibility comparison between factorials | 5 | 302047 | problem-383-divisibility-comparison-between-factorials |
--description--
Let f_5(n)
be the largest integer x
for which 5^x
divides n
.
For example, f_5(625\\,000) = 7
.
Let T_5(n)
be the number of integers i
which satisfy f_5((2 \times i - 1)!) < 2 \times f_5(i!)
and 1 ≤ i ≤ n
.
It can be verified that T_5({10}^3) = 68
and T_5({10}^9) = 2\\,408\\,210
.
Find T_5({10}^{18})
.
--hints--
factorialDivisibilityComparison()
should return 22173624649806
.
assert.strictEqual(factorialDivisibilityComparison(), 22173624649806);
--seed--
--seed-contents--
function factorialDivisibilityComparison() {
return true;
}
factorialDivisibilityComparison();
--solutions--
// solution required