Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-383-divisibility-comparison-between-factorials.md
gikf d269909faa fix(curriculum): clean-up Project Euler 381-400 (#43024)
* fix: clean-up Project Euler 381-400

* fix: missing image extension

* fix: missing subscripts

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-30 07:59:29 -07:00

47 lines
918 B
Markdown

---
id: 5900f4ed1000cf542c50ffff
title: 'Problem 383: Divisibility comparison between factorials'
challengeType: 5
forumTopicId: 302047
dashedName: problem-383-divisibility-comparison-between-factorials
---
# --description--
Let $f_5(n)$ be the largest integer $x$ for which $5^x$ divides $n$.
For example, $f_5(625\\,000) = 7$.
Let $T_5(n)$ be the number of integers $i$ which satisfy $f_5((2 \times i - 1)!) &lt; 2 \times f_5(i!)$ and $1 ≤ i ≤ n$.
It can be verified that $T_5({10}^3) = 68$ and $T_5({10}^9) = 2\\,408\\,210$.
Find $T_5({10}^{18})$.
# --hints--
`factorialDivisibilityComparison()` should return `22173624649806`.
```js
assert.strictEqual(factorialDivisibilityComparison(), 22173624649806);
```
# --seed--
## --seed-contents--
```js
function factorialDivisibilityComparison() {
return true;
}
factorialDivisibilityComparison();
```
# --solutions--
```js
// solution required
```