* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.0 KiB
1.0 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5331000cf542c510046 | Problem 455: Powers With Trailing Digits | 5 | 302129 | problem-455-powers-with-trailing-digits |
--description--
Let f(n)
be the largest positive integer x
less than {10}^9
such that the last 9 digits of n^x
form the number x
(including leading zeros), or zero if no such integer exists.
For example:
$$\begin{align} & f(4) = 411\,728\,896 (4^{411\,728\,896} = ...490\underline{411728896}) \\ & f(10) = 0 \\ & f(157) = 743\,757 (157^{743\,757} = ...567\underline{000743757}) \\ & Σf(n), 2 ≤ n ≤ 103 = 442\,530\,011\,399 \end{align}$$
Find \sum f(n)
, 2 ≤ n ≤ {10}^6
.
--hints--
powersWithTrailingDigits()
should return 450186511399999
.
assert.strictEqual(powersWithTrailingDigits(), 450186511399999);
--seed--
--seed-contents--
function powersWithTrailingDigits() {
return true;
}
powersWithTrailingDigits();
--solutions--
// solution required