Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-455-powers-with-trailing-digits.md
gikf a2b2ef3f75 fix(curriculum): clean-up Project Euler 441-460 (#43068)
* fix: clean-up Project Euler 441-460

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-30 08:20:31 -07:00

50 lines
1.0 KiB
Markdown

---
id: 5900f5331000cf542c510046
title: 'Problem 455: Powers With Trailing Digits'
challengeType: 5
forumTopicId: 302129
dashedName: problem-455-powers-with-trailing-digits
---
# --description--
Let $f(n)$ be the largest positive integer $x$ less than ${10}^9$ such that the last 9 digits of $n^x$ form the number $x$ (including leading zeros), or zero if no such integer exists.
For example:
$$\begin{align}
& f(4) = 411\\,728\\,896 (4^{411\\,728\\,896} = ...490\underline{411728896}) \\\\
& f(10) = 0 \\\\
& f(157) = 743\\,757 (157^{743\\,757} = ...567\underline{000743757}) \\\\
& Σf(n), 2 ≤ n ≤ 103 = 442\\,530\\,011\\,399
\end{align}$$
Find $\sum f(n)$, $2 ≤ n ≤ {10}^6$.
# --hints--
`powersWithTrailingDigits()` should return `450186511399999`.
```js
assert.strictEqual(powersWithTrailingDigits(), 450186511399999);
```
# --seed--
## --seed-contents--
```js
function powersWithTrailingDigits() {
return true;
}
powersWithTrailingDigits();
```
# --solutions--
```js
// solution required
```