* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
50 lines
1.0 KiB
Markdown
50 lines
1.0 KiB
Markdown
---
|
|
id: 5900f5331000cf542c510046
|
|
title: 'Problem 455: Powers With Trailing Digits'
|
|
challengeType: 5
|
|
forumTopicId: 302129
|
|
dashedName: problem-455-powers-with-trailing-digits
|
|
---
|
|
|
|
# --description--
|
|
|
|
Let $f(n)$ be the largest positive integer $x$ less than ${10}^9$ such that the last 9 digits of $n^x$ form the number $x$ (including leading zeros), or zero if no such integer exists.
|
|
|
|
For example:
|
|
|
|
$$\begin{align}
|
|
& f(4) = 411\\,728\\,896 (4^{411\\,728\\,896} = ...490\underline{411728896}) \\\\
|
|
& f(10) = 0 \\\\
|
|
& f(157) = 743\\,757 (157^{743\\,757} = ...567\underline{000743757}) \\\\
|
|
& Σf(n), 2 ≤ n ≤ 103 = 442\\,530\\,011\\,399
|
|
\end{align}$$
|
|
|
|
Find $\sum f(n)$, $2 ≤ n ≤ {10}^6$.
|
|
|
|
# --hints--
|
|
|
|
`powersWithTrailingDigits()` should return `450186511399999`.
|
|
|
|
```js
|
|
assert.strictEqual(powersWithTrailingDigits(), 450186511399999);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function powersWithTrailingDigits() {
|
|
|
|
return true;
|
|
}
|
|
|
|
powersWithTrailingDigits();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|