1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5411000cf542c510054 | Problema 468: Divisori lisci di coefficienti binomiali | 5 | 302143 | problem-468-smooth-divisors-of-binomial-coefficients |
--description--
Un integrale è chiamato B-smooth se nessuno dei suoi fattori primi è più grande di B
.
Sia SB(n)
il divisore B-smooth più grande di n
.
Esempi:
$$\begin{align} & S_1(10) = 1 \\ & S_4(2\,100) = 12 \\ & S_{17}(2\,496\,144) = 5\,712 \end{align}$$
Definisci F(n) = \displaystyle\sum_{B = 1}^n \sum_{r = 0}^n S_B(\displaystyle\binom{n}{r})
. Qui, \displaystyle\binom{n}{r}
denota il coefficiente binomiale.
Esempi:
$$\begin{align} & F(11) = 3132 \\ & F(1\,111)\bmod 1\,000\,000\,993 = 706\,036\,312 \\ & F(111\,111)\bmod 1\,000\,000\,993 = 22\,156\,169 \end{align}$$
Trova F(11\\,111\\,111)\bmod 1\\,000\\,000\\,993
.
--hints--
smoothDivisorsOfBinomialCoefficients()
dovrebbe restituire 852950321
.
assert.strictEqual(smoothDivisorsOfBinomialCoefficients(), 852950321);
--seed--
--seed-contents--
function smoothDivisorsOfBinomialCoefficients() {
return true;
}
smoothDivisorsOfBinomialCoefficients();
--solutions--
// solution required