55 lines
1.2 KiB
Markdown
55 lines
1.2 KiB
Markdown
---
|
|
id: 5900f5411000cf542c510054
|
|
title: 'Problema 468: Divisori lisci di coefficienti binomiali'
|
|
challengeType: 5
|
|
forumTopicId: 302143
|
|
dashedName: problem-468-smooth-divisors-of-binomial-coefficients
|
|
---
|
|
|
|
# --description--
|
|
|
|
Un integrale è chiamato B-smooth se nessuno dei suoi fattori primi è più grande di $B$.
|
|
|
|
Sia $SB(n)$ il divisore B-smooth più grande di $n$.
|
|
|
|
Esempi:
|
|
|
|
$$\begin{align} & S_1(10) = 1 \\\\
|
|
& S_4(2\\,100) = 12 \\\\ & S_{17}(2\\,496\\,144) = 5\\,712 \end{align}$$
|
|
|
|
Definisci $F(n) = \displaystyle\sum_{B = 1}^n \sum_{r = 0}^n S_B(\displaystyle\binom{n}{r})$. Qui, $\displaystyle\binom{n}{r}$ denota il coefficiente binomiale.
|
|
|
|
Esempi:
|
|
|
|
$$\begin{align} & F(11) = 3132 \\\\
|
|
& F(1\\,111)\bmod 1\\,000\\,000\\,993 = 706\\,036\\,312 \\\\ & F(111\\,111)\bmod 1\\,000\\,000\\,993 = 22\\,156\\,169 \end{align}$$
|
|
|
|
Trova $F(11\\,111\\,111)\bmod 1\\,000\\,000\\,993$.
|
|
|
|
# --hints--
|
|
|
|
`smoothDivisorsOfBinomialCoefficients()` dovrebbe restituire `852950321`.
|
|
|
|
```js
|
|
assert.strictEqual(smoothDivisorsOfBinomialCoefficients(), 852950321);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function smoothDivisorsOfBinomialCoefficients() {
|
|
|
|
return true;
|
|
}
|
|
|
|
smoothDivisorsOfBinomialCoefficients();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|