1.4 KiB
1.4 KiB
id, localeTitle, challengeType, title
id | localeTitle | challengeType | title |
---|---|---|---|
5 | 5900f4521000cf542c50ff64 | 5 | Problem 229: Four Representations using Squares |
Description
3600 = 482 + 362 3600 = 202 + 2 × 402 3600 = 302 + 3 × 302 3600 = 452 + 7 × 152
Del mismo modo, encontramos que 88201 = 992 + 2802 = 2872 + 2 × 542 = 2832 + 3 × 522 = 1972 + 7 × 842.
En 1747, Euler demostró qué números se pueden representar como la suma de dos cuadrados. Estamos interesados en los números n que admiten representaciones de los siguientes cuatro tipos:
n = a12 + b12n = a22 + 2 b22n = a32 + 3 b32n = a72 + 7 b72,
donde ak y bk son enteros positivos.
Hay 75373 números de este tipo que no superan los 107.
¿Cuántos de esos números hay que no superan 2 × 109?
Instructions
Tests
tests:
- text: <code>euler229()</code> debe devolver 11325263.
testString: 'assert.strictEqual(euler229(), 11325263, "<code>euler229()</code> should return 11325263.");'
Challenge Seed
function euler229() {
// Good luck!
return true;
}
euler229();
Solution
// solution required