* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
6.7 KiB
6.7 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
587d8258367417b2b2512c81 | 在二叉搜索树中删除具有一个子节点的节点 | 1 | delete-a-node-with-one-child-in-a-binary-search-tree |
--description--
现在我们可以删除叶子节点,让我们继续第二种情况:删除一个子节点。对于这种情况,假设我们有一棵树,其中包含以下节点1 - 2 - 3,其中1是根。要删除2,我们只需要在1到3中做出正确的引用。更一般地说,为了删除只有一个子节点的节点,我们将该节点的父引用作为树中的下一个节点。说明:我们在remove
方法中提供了一些代码,用于完成上一次挑战中的任务。我们找到要删除的目标及其父节点,并定义目标节点具有的子节点数。让我们在这里为仅有一个子节点的目标节点添加下一个案例。在这里,我们必须确定单个子节点是树中的左或右分支,然后在父节点中设置正确的引用以指向此节点。另外,让我们考虑目标是根节点的情况(这意味着父节点将为null
)。只要通过测试,请随意用自己的代码替换所有入门代码。
--hints--
存在BinarySearchTree
数据结构。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
二叉搜索树有一个名为remove
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.remove == 'function';
})()
);
尝试删除不存在的元素将返回null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
return test.remove(100) == null;
})()
);
如果根节点没有子节点,则删除它会将根节点设置为null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(500);
test.remove(500);
return test.inorder() == null;
})()
);
remove
方法从树中删除叶节点
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(5);
test.add(3);
test.add(7);
test.add(6);
test.add(10);
test.add(12);
test.remove(3);
test.remove(12);
test.remove(10);
return test.inorder().join('') == '567';
})()
);
remove
方法删除具有一个子节点的节点。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(-1);
test.add(3);
test.add(7);
test.add(16);
test.remove(16);
test.remove(7);
test.remove(3);
return test.inorder().join('') == '-1';
})()
);
删除具有两个节点的树中的根将第二个节点设置为根。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(15);
test.add(27);
test.remove(15);
return test.inorder().join('') == '27';
})()
);
--seed--
--after-user-code--
BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left);
}
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
}
} else {
return null;
}
}
return searchTree(node);
}
},
inorder: function() {
if (this.root == null) {
return null;
} else {
var result = new Array();
function traverseInOrder(node) {
if (node.left != null) {
traverseInOrder(node.left);
}
result.push(node.value);
if (node.right != null) {
traverseInOrder(node.right);
}
}
traverseInOrder(this.root);
return result;
}
}
}
);
--seed-contents--
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
this.remove = function(value) {
if (this.root === null) {
return null;
}
var target;
var parent = null;
// Find the target value and its parent
(function findValue(node = this.root) {
if (value == node.value) {
target = node;
} else if (value < node.value && node.left !== null) {
parent = node;
return findValue(node.left);
} else if (value < node.value && node.left === null) {
return null;
} else if (value > node.value && node.right !== null) {
parent = node;
return findValue(node.right);
} else {
return null;
}
}.bind(this)());
if (target === null) {
return null;
}
// Count the children of the target to delete
var children =
(target.left !== null ? 1 : 0) + (target.right !== null ? 1 : 0);
// Case 1: Target has no children
if (children === 0) {
if (target == this.root) {
this.root = null;
} else {
if (parent.left == target) {
parent.left = null;
} else {
parent.right = null;
}
}
}
// Case 2: Target has one child
// Only change code below this line
};
}
--solutions--
// solution required