freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/data-structures/delete-a-node-with-one-child-in-a-binary-search-tree.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

282 lines
6.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 587d8258367417b2b2512c81
title: 在二叉搜索树中删除具有一个子节点的节点
challengeType: 1
videoUrl: ''
dashedName: delete-a-node-with-one-child-in-a-binary-search-tree
---
# --description--
现在我们可以删除叶子节点让我们继续第二种情况删除一个子节点。对于这种情况假设我们有一棵树其中包含以下节点1 - 2 - 3其中1是根。要删除2我们只需要在1到3中做出正确的引用。更一般地说为了删除只有一个子节点的节点我们将该节点的父引用作为树中的下一个节点。说明我们在`remove`方法中提供了一些代码,用于完成上一次挑战中的任务。我们找到要删除的目标及其父节点,并定义目标节点具有的子节点数。让我们在这里为仅有一个子节点的目标节点添加下一个案例。在这里,我们必须确定单个子节点是树中的左或右分支,然后在父节点中设置正确的引用以指向此节点。另外,让我们考虑目标是根节点的情况(这意味着父节点将为`null` )。只要通过测试,请随意用自己的代码替换所有入门代码。
# --hints--
存在`BinarySearchTree`数据结构。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
```
二叉搜索树有一个名为`remove`的方法。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.remove == 'function';
})()
);
```
尝试删除不存在的元素将返回`null`
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
return test.remove(100) == null;
})()
);
```
如果根节点没有子节点,则删除它会将根节点设置为`null`
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(500);
test.remove(500);
return test.inorder() == null;
})()
);
```
`remove`方法从树中删除叶节点
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(5);
test.add(3);
test.add(7);
test.add(6);
test.add(10);
test.add(12);
test.remove(3);
test.remove(12);
test.remove(10);
return test.inorder().join('') == '567';
})()
);
```
`remove`方法删除具有一个子节点的节点。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(-1);
test.add(3);
test.add(7);
test.add(16);
test.remove(16);
test.remove(7);
test.remove(3);
return test.inorder().join('') == '-1';
})()
);
```
删除具有两个节点的树中的根将第二个节点设置为根。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(15);
test.add(27);
test.remove(15);
return test.inorder().join('') == '27';
})()
);
```
# --seed--
## --after-user-code--
```js
BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left);
}
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
}
} else {
return null;
}
}
return searchTree(node);
}
},
inorder: function() {
if (this.root == null) {
return null;
} else {
var result = new Array();
function traverseInOrder(node) {
if (node.left != null) {
traverseInOrder(node.left);
}
result.push(node.value);
if (node.right != null) {
traverseInOrder(node.right);
}
}
traverseInOrder(this.root);
return result;
}
}
}
);
```
## --seed-contents--
```js
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
this.remove = function(value) {
if (this.root === null) {
return null;
}
var target;
var parent = null;
// Find the target value and its parent
(function findValue(node = this.root) {
if (value == node.value) {
target = node;
} else if (value < node.value && node.left !== null) {
parent = node;
return findValue(node.left);
} else if (value < node.value && node.left === null) {
return null;
} else if (value > node.value && node.right !== null) {
parent = node;
return findValue(node.right);
} else {
return null;
}
}.bind(this)());
if (target === null) {
return null;
}
// Count the children of the target to delete
var children =
(target.left !== null ? 1 : 0) + (target.right !== null ? 1 : 0);
// Case 1: Target has no children
if (children === 0) {
if (target == this.root) {
this.root = null;
} else {
if (parent.left == target) {
parent.left = null;
} else {
parent.right = null;
}
}
}
// Case 2: Target has one child
// Only change code below this line
};
}
```
# --solutions--
```js
// solution required
```