* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
7.7 KiB
7.7 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
587d8257367417b2b2512c7d | 找到二叉搜索树的最小和最大高度 | 1 | find-the-minimum-and-maximum-height-of-a-binary-search-tree |
--description--
在最后一个挑战中,我们描述了树可能变得不平衡的情景。为了理解平衡的概念,让我们看看另一个树属性:高度。树中的高度表示从根节点到任何给定叶节点的距离。高度分支的树结构中的不同路径可以具有不同的高度,但是对于给定的树,将具有最小和最大高度。如果树是平衡的,则这些值最多相差一个。这意味着在平衡树中,所有叶节点都存在于同一级别中,或者如果它们不在同一级别内,则它们最多相隔一个级别。平衡的属性对于树很重要,因为它决定了树操作的效率。正如我们在上一次挑战中所解释的那样,我们面临严重不平衡树木的最坏情况时间复杂性。自平衡树通常用于在具有动态数据集的树中解决此问题。这些的常见例子包括AVL树,红黑树和B树。这些树都包含额外的内部逻辑,当插入或删除创建不平衡状态时,它会重新平衡树。注意:与height相似的属性是depth,它指的是给定节点距根节点的距离。说明:为我们的二叉树编写两种方法: findMinHeight
和findMaxHeight
。这些方法应分别返回给定二叉树内最小和最大高度的整数值。如果节点为空,请为其指定高度-1
(这是基本情况)。最后,添加第三个方法isBalanced
,它返回true
或false
具体取决于树是否平衡。您可以使用刚才编写的前两种方法来确定这一点。
--hints--
存在BinarySearchTree
数据结构。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
二叉搜索树有一个名为findMinHeight
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMinHeight == 'function';
})()
);
二叉搜索树有一个名为findMaxHeight
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMaxHeight == 'function';
})()
);
二叉搜索树有一个名为isBalanced
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.isBalanced == 'function';
})()
);
findMinHeight
方法返回树的最小高度。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMinHeight !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMinHeight() == 1;
})()
);
findMaxHeight
方法返回树的最大高度。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMaxHeight !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMaxHeight() == 5;
})()
);
空树返回高度-1
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMaxHeight !== 'function') {
return false;
}
return test.findMaxHeight() == -1;
})()
);
如果树是平衡二叉搜索树,则isBalanced
方法返回true。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.isBalanced !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return !test.isBalanced();
})()
);
--seed--
--after-user-code--
BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left);
}
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
}
} else {
return null;
}
}
var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
return searchTree(node);
}
}
}
);
--seed-contents--
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line
// Only change code above this line
}
--solutions--
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line
// Only change code above this line
this.findMinHeight = function(root = this.root) {
// empty tree.
if (root === null) {
return -1;
}
// leaf node.
if (root.left === null && root.right === null) {
return 0;
}
if (root.left === null) {
return this.findMinHeight(root.right) + 1;
}
if (root.right === null) {
return this.findMinHeight(root.left) + 1;
}
const lHeight = this.findMinHeight(root.left);
const rHeight = this.findMinHeight(root.right);
return Math.min(lHeight, rHeight) + 1;
};
this.findMaxHeight = function(root = this.root) {
// empty tree.
if (root === null) {
return -1;
}
// leaf node.
if (root.left === null && root.right === null) {
return 0;
}
if (root.left === null) {
return this.findMaxHeight(root.right) + 1;
}
if (root.right === null) {
return this.findMaxHeight(root.left) + 1;
}
const lHeight = this.findMaxHeight(root.left);
const rHeight = this.findMaxHeight(root.right);
return Math.max(lHeight, rHeight) + 1;
};
this.isBalanced = function(root = this.root) {
if (root === null) {
return true;
}
if (root.left === null && root.right === null) {
return true;
}
if (root.left === null) {
return this.findMaxHeight(root.right) <= 0;
}
if (root.right === null) {
return this.findMaxHeight(root.left) <= 0;
}
const lHeight = this.findMaxHeight(root.left);
const rHeight = this.findMaxHeight(root.right);
if (Math.abs(lHeight - rHeight) > 1) {
return false;
}
return this.isBalanced(root.left) && this.isBalanced(root.right);
};
}