freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/data-structures/find-the-minimum-and-maximum-height-of-a-binary-search-tree.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

313 lines
7.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 587d8257367417b2b2512c7d
title: 找到二叉搜索树的最小和最大高度
challengeType: 1
videoUrl: ''
dashedName: find-the-minimum-and-maximum-height-of-a-binary-search-tree
---
# --description--
在最后一个挑战中我们描述了树可能变得不平衡的情景。为了理解平衡的概念让我们看看另一个树属性高度。树中的高度表示从根节点到任何给定叶节点的距离。高度分支的树结构中的不同路径可以具有不同的高度但是对于给定的树将具有最小和最大高度。如果树是平衡的则这些值最多相差一个。这意味着在平衡树中所有叶节点都存在于同一级别中或者如果它们不在同一级别内则它们最多相隔一个级别。平衡的属性对于树很重要因为它决定了树操作的效率。正如我们在上一次挑战中所解释的那样我们面临严重不平衡树木的最坏情况时间复杂性。自平衡树通常用于在具有动态数据集的树中解决此问题。这些的常见例子包括AVL树红黑树和B树。这些树都包含额外的内部逻辑当插入或删除创建不平衡状态时它会重新平衡树。注意与height相似的属性是depth它指的是给定节点距根节点的距离。说明为我们的二叉树编写两种方法 `findMinHeight``findMaxHeight` 。这些方法应分别返回给定二叉树内最小和最大高度的整数值。如果节点为空,请为其指定高度`-1` (这是基本情况)。最后,添加第三个方法`isBalanced` ,它返回`true``false`具体取决于树是否平衡。您可以使用刚才编写的前两种方法来确定这一点。
# --hints--
存在`BinarySearchTree`数据结构。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
```
二叉搜索树有一个名为`findMinHeight`的方法。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMinHeight == 'function';
})()
);
```
二叉搜索树有一个名为`findMaxHeight`的方法。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMaxHeight == 'function';
})()
);
```
二叉搜索树有一个名为`isBalanced`的方法。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.isBalanced == 'function';
})()
);
```
`findMinHeight`方法返回树的最小高度。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMinHeight !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMinHeight() == 1;
})()
);
```
`findMaxHeight`方法返回树的最大高度。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMaxHeight !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMaxHeight() == 5;
})()
);
```
空树返回高度`-1`
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMaxHeight !== 'function') {
return false;
}
return test.findMaxHeight() == -1;
})()
);
```
如果树是平衡二叉搜索树,则`isBalanced`方法返回true。
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.isBalanced !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return !test.isBalanced();
})()
);
```
# --seed--
## --after-user-code--
```js
BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left);
}
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
}
} else {
return null;
}
}
var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
return searchTree(node);
}
}
}
);
```
## --seed-contents--
```js
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line
// Only change code above this line
}
```
# --solutions--
```js
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line
// Only change code above this line
this.findMinHeight = function(root = this.root) {
// empty tree.
if (root === null) {
return -1;
}
// leaf node.
if (root.left === null && root.right === null) {
return 0;
}
if (root.left === null) {
return this.findMinHeight(root.right) + 1;
}
if (root.right === null) {
return this.findMinHeight(root.left) + 1;
}
const lHeight = this.findMinHeight(root.left);
const rHeight = this.findMinHeight(root.right);
return Math.min(lHeight, rHeight) + 1;
};
this.findMaxHeight = function(root = this.root) {
// empty tree.
if (root === null) {
return -1;
}
// leaf node.
if (root.left === null && root.right === null) {
return 0;
}
if (root.left === null) {
return this.findMaxHeight(root.right) + 1;
}
if (root.right === null) {
return this.findMaxHeight(root.left) + 1;
}
const lHeight = this.findMaxHeight(root.left);
const rHeight = this.findMaxHeight(root.right);
return Math.max(lHeight, rHeight) + 1;
};
this.isBalanced = function(root = this.root) {
if (root === null) {
return true;
}
if (root.left === null && root.right === null) {
return true;
}
if (root.left === null) {
return this.findMaxHeight(root.right) <= 0;
}
if (root.right === null) {
return this.findMaxHeight(root.left) <= 0;
}
const lHeight = this.findMaxHeight(root.left);
const rHeight = this.findMaxHeight(root.right);
if (Math.abs(lHeight - rHeight) > 1) {
return false;
}
return this.isBalanced(root.left) && this.isBalanced(root.right);
};
}
```