* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
313 lines
7.7 KiB
Markdown
313 lines
7.7 KiB
Markdown
---
|
||
id: 587d8257367417b2b2512c7d
|
||
title: 找到二叉搜索树的最小和最大高度
|
||
challengeType: 1
|
||
videoUrl: ''
|
||
dashedName: find-the-minimum-and-maximum-height-of-a-binary-search-tree
|
||
---
|
||
|
||
# --description--
|
||
|
||
在最后一个挑战中,我们描述了树可能变得不平衡的情景。为了理解平衡的概念,让我们看看另一个树属性:高度。树中的高度表示从根节点到任何给定叶节点的距离。高度分支的树结构中的不同路径可以具有不同的高度,但是对于给定的树,将具有最小和最大高度。如果树是平衡的,则这些值最多相差一个。这意味着在平衡树中,所有叶节点都存在于同一级别中,或者如果它们不在同一级别内,则它们最多相隔一个级别。平衡的属性对于树很重要,因为它决定了树操作的效率。正如我们在上一次挑战中所解释的那样,我们面临严重不平衡树木的最坏情况时间复杂性。自平衡树通常用于在具有动态数据集的树中解决此问题。这些的常见例子包括AVL树,红黑树和B树。这些树都包含额外的内部逻辑,当插入或删除创建不平衡状态时,它会重新平衡树。注意:与height相似的属性是depth,它指的是给定节点距根节点的距离。说明:为我们的二叉树编写两种方法: `findMinHeight`和`findMaxHeight` 。这些方法应分别返回给定二叉树内最小和最大高度的整数值。如果节点为空,请为其指定高度`-1` (这是基本情况)。最后,添加第三个方法`isBalanced` ,它返回`true`或`false`具体取决于树是否平衡。您可以使用刚才编写的前两种方法来确定这一点。
|
||
|
||
# --hints--
|
||
|
||
存在`BinarySearchTree`数据结构。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
}
|
||
return typeof test == 'object';
|
||
})()
|
||
);
|
||
```
|
||
|
||
二叉搜索树有一个名为`findMinHeight`的方法。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
return typeof test.findMinHeight == 'function';
|
||
})()
|
||
);
|
||
```
|
||
|
||
二叉搜索树有一个名为`findMaxHeight`的方法。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
return typeof test.findMaxHeight == 'function';
|
||
})()
|
||
);
|
||
```
|
||
|
||
二叉搜索树有一个名为`isBalanced`的方法。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
return typeof test.isBalanced == 'function';
|
||
})()
|
||
);
|
||
```
|
||
|
||
`findMinHeight`方法返回树的最小高度。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
if (typeof test.findMinHeight !== 'function') {
|
||
return false;
|
||
}
|
||
test.add(4);
|
||
test.add(1);
|
||
test.add(7);
|
||
test.add(87);
|
||
test.add(34);
|
||
test.add(45);
|
||
test.add(73);
|
||
test.add(8);
|
||
return test.findMinHeight() == 1;
|
||
})()
|
||
);
|
||
```
|
||
|
||
`findMaxHeight`方法返回树的最大高度。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
if (typeof test.findMaxHeight !== 'function') {
|
||
return false;
|
||
}
|
||
test.add(4);
|
||
test.add(1);
|
||
test.add(7);
|
||
test.add(87);
|
||
test.add(34);
|
||
test.add(45);
|
||
test.add(73);
|
||
test.add(8);
|
||
return test.findMaxHeight() == 5;
|
||
})()
|
||
);
|
||
```
|
||
|
||
空树返回高度`-1` 。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
if (typeof test.findMaxHeight !== 'function') {
|
||
return false;
|
||
}
|
||
return test.findMaxHeight() == -1;
|
||
})()
|
||
);
|
||
```
|
||
|
||
如果树是平衡二叉搜索树,则`isBalanced`方法返回true。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
if (typeof test.isBalanced !== 'function') {
|
||
return false;
|
||
}
|
||
test.add(4);
|
||
test.add(1);
|
||
test.add(7);
|
||
test.add(87);
|
||
test.add(34);
|
||
test.add(45);
|
||
test.add(73);
|
||
test.add(8);
|
||
return !test.isBalanced();
|
||
})()
|
||
);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --after-user-code--
|
||
|
||
```js
|
||
BinarySearchTree.prototype = Object.assign(
|
||
BinarySearchTree.prototype,
|
||
{
|
||
add: function(value) {
|
||
function searchTree(node) {
|
||
if (value < node.value) {
|
||
if (node.left == null) {
|
||
node.left = new Node(value);
|
||
return;
|
||
} else if (node.left != null) {
|
||
return searchTree(node.left);
|
||
}
|
||
} else if (value > node.value) {
|
||
if (node.right == null) {
|
||
node.right = new Node(value);
|
||
return;
|
||
} else if (node.right != null) {
|
||
return searchTree(node.right);
|
||
}
|
||
} else {
|
||
return null;
|
||
}
|
||
}
|
||
|
||
var node = this.root;
|
||
if (node == null) {
|
||
this.root = new Node(value);
|
||
return;
|
||
} else {
|
||
return searchTree(node);
|
||
}
|
||
}
|
||
}
|
||
);
|
||
```
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
|
||
function Node(value) {
|
||
this.value = value;
|
||
this.left = null;
|
||
this.right = null;
|
||
}
|
||
function BinarySearchTree() {
|
||
this.root = null;
|
||
// Only change code below this line
|
||
|
||
// Only change code above this line
|
||
}
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
|
||
function Node(value) {
|
||
this.value = value;
|
||
this.left = null;
|
||
this.right = null;
|
||
}
|
||
function BinarySearchTree() {
|
||
this.root = null;
|
||
// Only change code below this line
|
||
|
||
// Only change code above this line
|
||
this.findMinHeight = function(root = this.root) {
|
||
// empty tree.
|
||
if (root === null) {
|
||
return -1;
|
||
}
|
||
// leaf node.
|
||
if (root.left === null && root.right === null) {
|
||
return 0;
|
||
}
|
||
if (root.left === null) {
|
||
return this.findMinHeight(root.right) + 1;
|
||
}
|
||
if (root.right === null) {
|
||
return this.findMinHeight(root.left) + 1;
|
||
}
|
||
const lHeight = this.findMinHeight(root.left);
|
||
const rHeight = this.findMinHeight(root.right);
|
||
return Math.min(lHeight, rHeight) + 1;
|
||
};
|
||
this.findMaxHeight = function(root = this.root) {
|
||
// empty tree.
|
||
if (root === null) {
|
||
return -1;
|
||
}
|
||
// leaf node.
|
||
if (root.left === null && root.right === null) {
|
||
return 0;
|
||
}
|
||
if (root.left === null) {
|
||
return this.findMaxHeight(root.right) + 1;
|
||
}
|
||
if (root.right === null) {
|
||
return this.findMaxHeight(root.left) + 1;
|
||
}
|
||
const lHeight = this.findMaxHeight(root.left);
|
||
const rHeight = this.findMaxHeight(root.right);
|
||
return Math.max(lHeight, rHeight) + 1;
|
||
};
|
||
this.isBalanced = function(root = this.root) {
|
||
if (root === null) {
|
||
return true;
|
||
}
|
||
|
||
if (root.left === null && root.right === null) {
|
||
return true;
|
||
}
|
||
|
||
if (root.left === null) {
|
||
return this.findMaxHeight(root.right) <= 0;
|
||
}
|
||
|
||
if (root.right === null) {
|
||
return this.findMaxHeight(root.left) <= 0;
|
||
}
|
||
|
||
const lHeight = this.findMaxHeight(root.left);
|
||
const rHeight = this.findMaxHeight(root.right);
|
||
if (Math.abs(lHeight - rHeight) > 1) {
|
||
return false;
|
||
}
|
||
return this.isBalanced(root.left) && this.isBalanced(root.right);
|
||
};
|
||
}
|
||
```
|