Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

976 B
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4ff1000cf542c510011 问题402整数值多项式 5 problem-402-integer-valued-polynomials

--description--

可以证明对于每个整数n多项式n4 + 4n3 + 2n2 + 5n是6的倍数。还可以显示6是满足该属性的最大整数。

将Mabc定义为最大m使得n4 + an3 + bn2 + cn是所有整数n的m的倍数。例如M4,2,5= 6。

此外将SN定义为所有0 <abc≤N的Mabc之和。

我们可以验证S10= 1972和S10000= 2024258331114。

设Fk为斐波纳契数列对于k≥2F0 = 0F1 = 1且Fk = Fk-1 + Fk-2。

求最高9位数为ΣSFk为2≤k≤1234567890123。

--hints--

euler402()应返回356019862。

assert.strictEqual(euler402(), 356019862);

--seed--

--seed-contents--

function euler402() {

  return true;
}

euler402();

--solutions--

// solution required