* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
49 lines
976 B
Markdown
49 lines
976 B
Markdown
---
|
||
id: 5900f4ff1000cf542c510011
|
||
title: 问题402:整数值多项式
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-402-integer-valued-polynomials
|
||
---
|
||
|
||
# --description--
|
||
|
||
可以证明,对于每个整数n,多项式n4 + 4n3 + 2n2 + 5n是6的倍数。还可以显示6是满足该属性的最大整数。
|
||
|
||
将M(a,b,c)定义为最大m,使得n4 + an3 + bn2 + cn是所有整数n的m的倍数。例如,M(4,2,5)= 6。
|
||
|
||
此外,将S(N)定义为所有0 <a,b,c≤N的M(a,b,c)之和。
|
||
|
||
我们可以验证S(10)= 1972和S(10000)= 2024258331114。
|
||
|
||
设Fk为斐波纳契数列:对于k≥2,F0 = 0,F1 = 1且Fk = Fk-1 + Fk-2。
|
||
|
||
求最高9位数为ΣS(Fk)为2≤k≤1234567890123。
|
||
|
||
# --hints--
|
||
|
||
`euler402()`应返回356019862。
|
||
|
||
```js
|
||
assert.strictEqual(euler402(), 356019862);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler402() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler402();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|